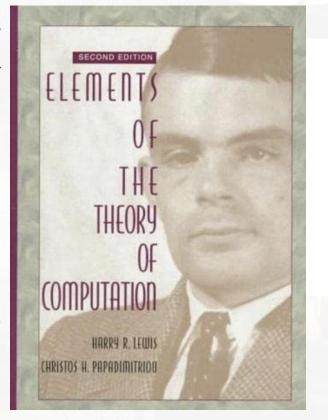
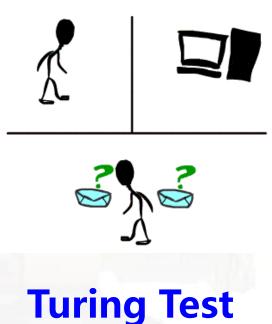


15. Deep Learning

Artificial Intelligence

- Alan Turing
 - Turing test, a method to assess a machine's ability to exhibit human-like intelligent behavior
- **■** Artificial intelligence, or AI
 - technology that enables computers and machines to simulate human intelligence and problem-solving capabilities.

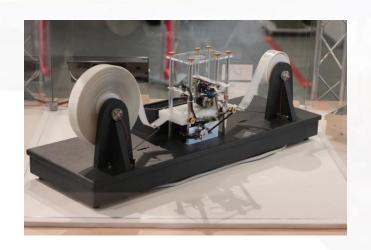


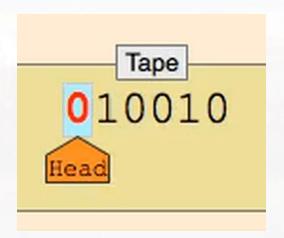


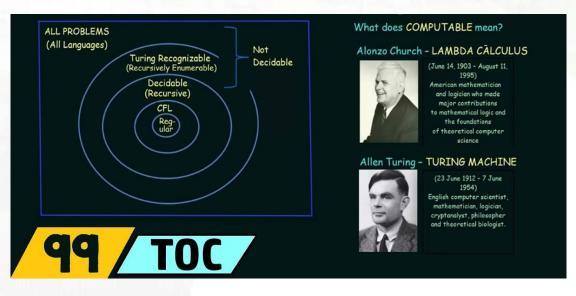
Artificial Intelligence

■ Turing Machine

- a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules
- Despite the model's simplicity, it is capable of implementing any computer algorithm.







Artificial Intelligence

Foundation model

Text to Image

ChatGPT

SAM

SORA

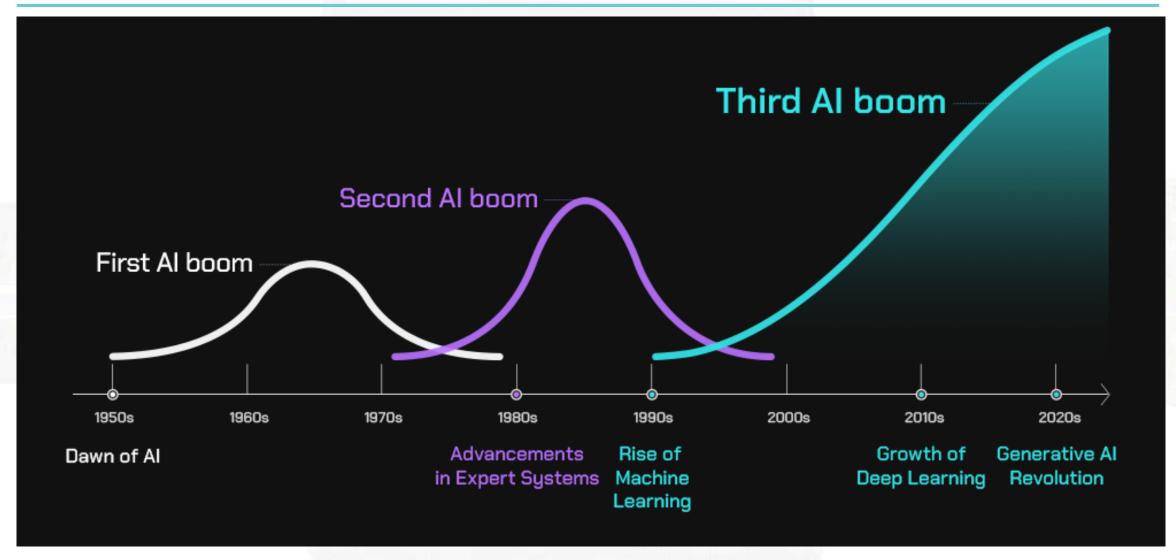
Gemini

MLLM

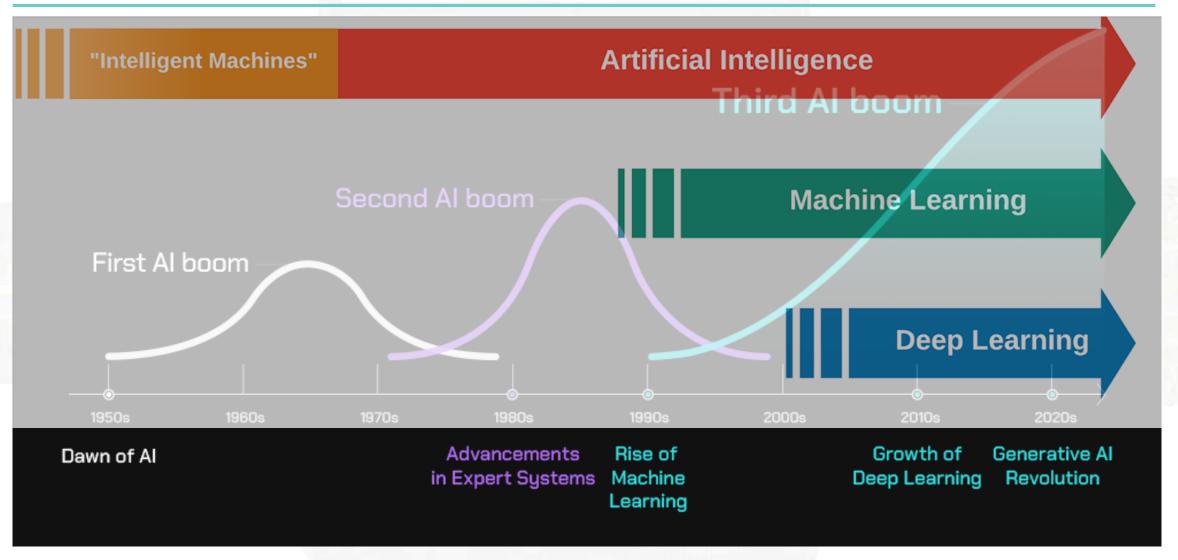
DriveGPT

Genie

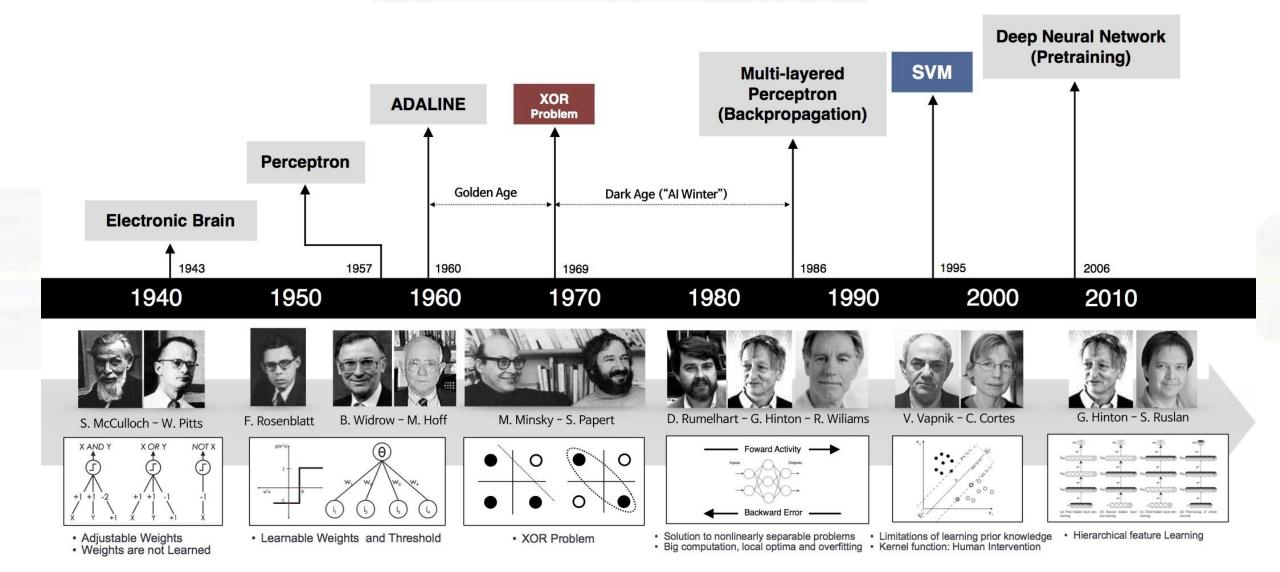
The Development of AI



The Development of AI

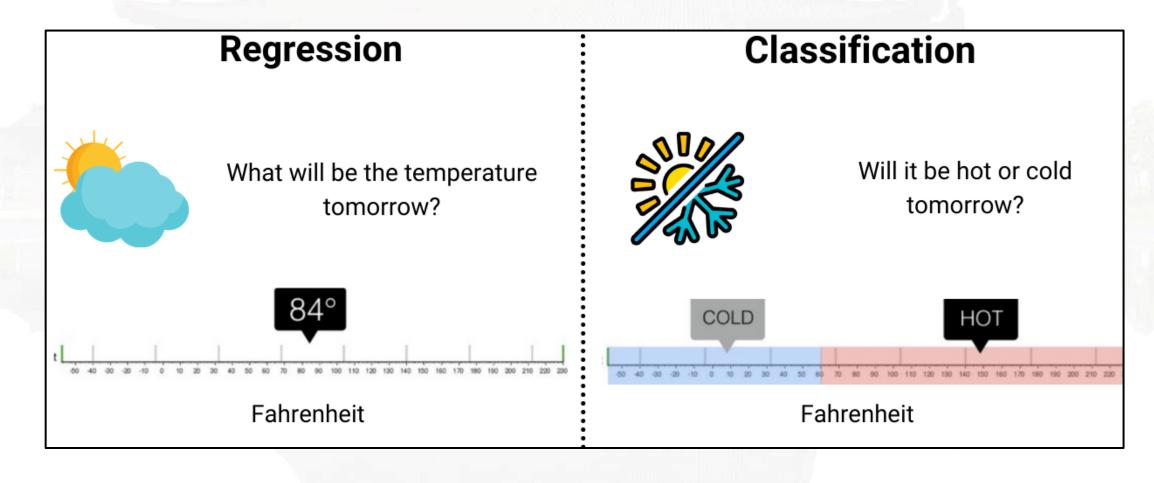


The Development of DL



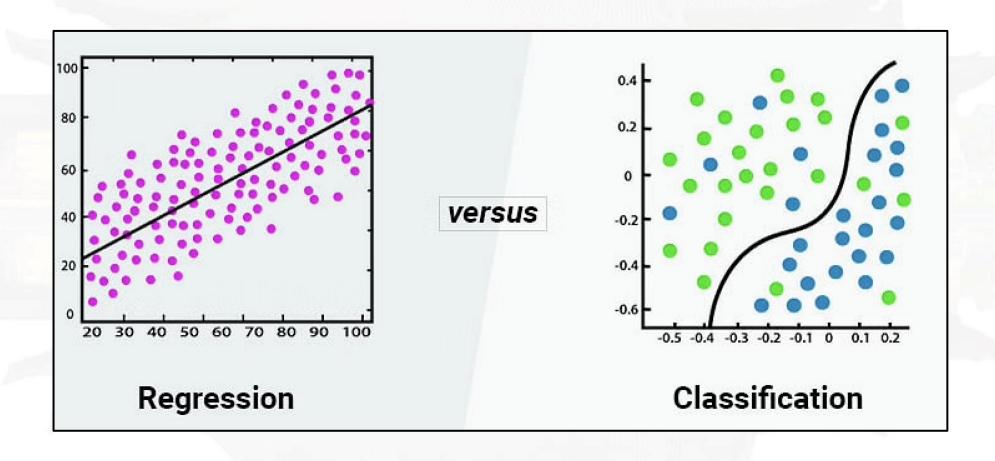
Data View: Fundamental Problems

■ Output: Continuous description or discrete state



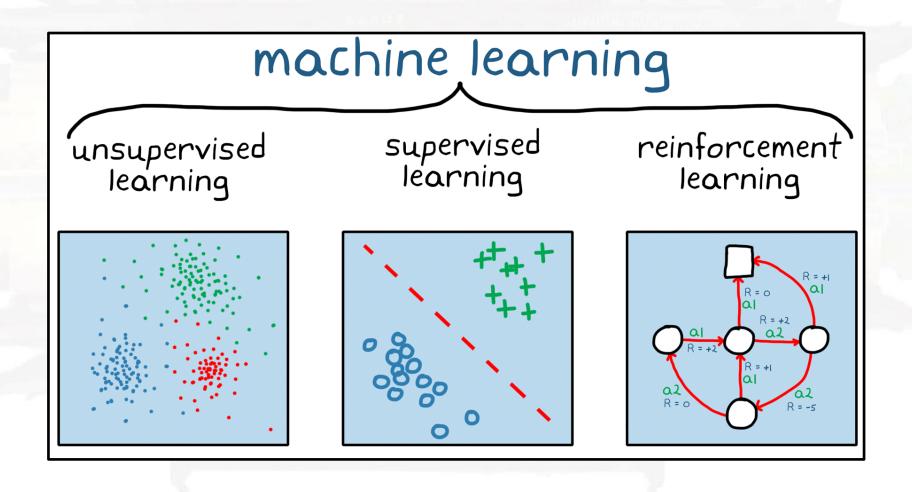
Data View: Fundamental Problems

■ Output: Continuous description or discrete state

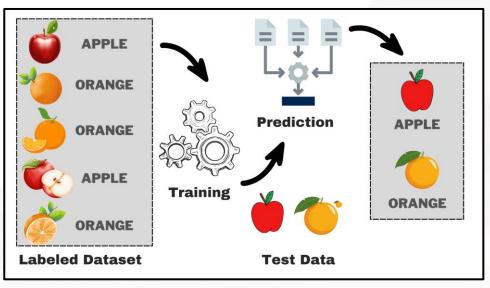


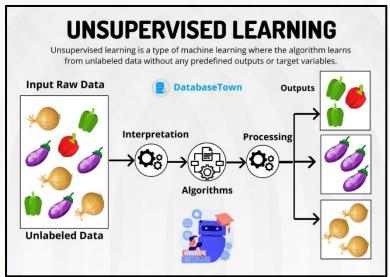
Data view: Learning Paradigm

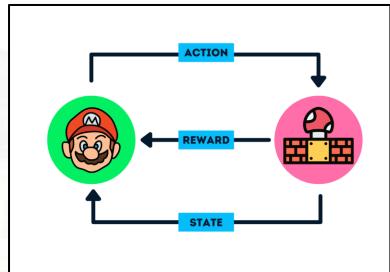
Availability of outputs: unavailable, available, partially available



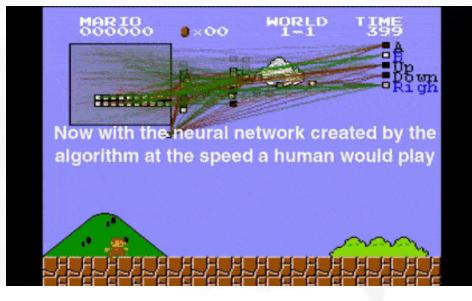
Data view: Learning Paradigm







Weight	Texture	Label
150g	Bumpy	Orange
170g	Bumpy	Orange
140g	Smooth	Apple
130g	Smooth	Apple

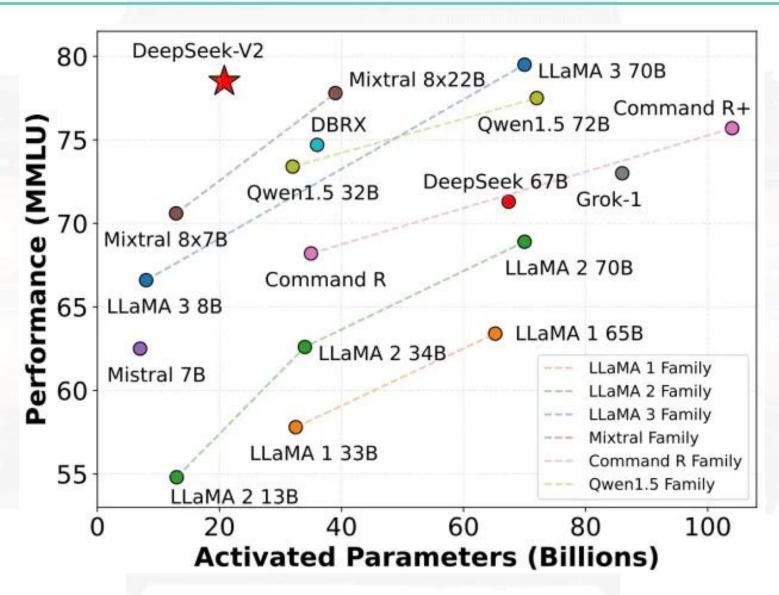


Action	↑	\	→	←
Start	0	0	1	0
Idle	0	0	0	0
Correct Path	0	50	22	0
Wrong Path	15	0	18	0
End	0	0	1	0
LIIG				

Model view: neural network

Aspect	Neural Networks	Support Vector Machines (SVM)
Model Type	Non-linear, based on layers of neurons.	Linear or non-linear (with kernel tricks), based on maximizing margins.
Data Requirements	Requires large datasets for training.	Works well with small to medium-sized datasets.
Complexity	Can model highly complex, non-linear relationships.	Handles non-linearity through kernel functions.
Training Time	Computationally expensive, especially for deep learning.	Slower training for large datasets, quadratic complexity in training.
Scalability	Scales well with data and features but requires more computational power.	Struggles with very large datasets and high- dimensional data.
Interpretability	Black-box model; difficult to interpret.	Easier to interpret, especially with linear SVM.

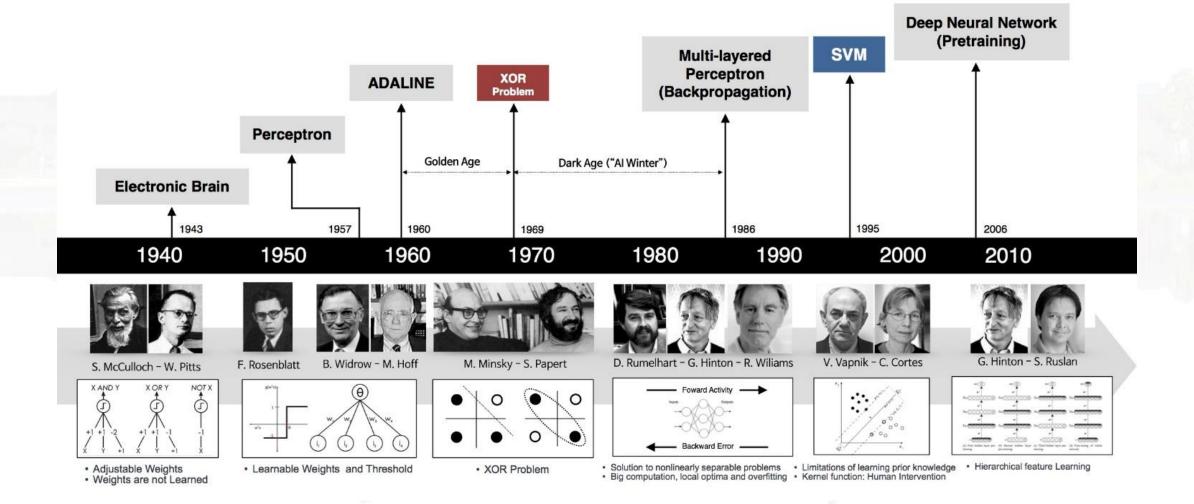
Model view: Neural Network



Model view: neural network

- Large searching space and fitting capacity
- -> Scaling law
- ->Data-driven
- ->Fit everything
- ->Data is all you need and expert is gone

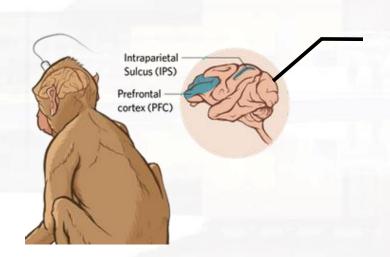
Computational Neuron and Perceptron

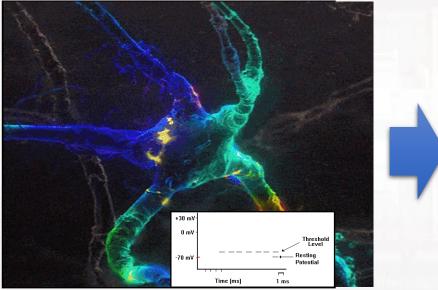


Biological Neuron

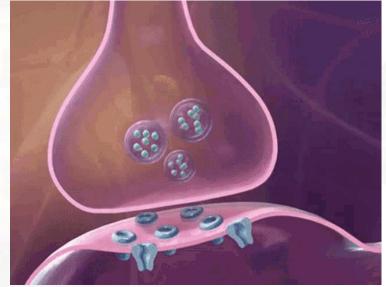
Action potentials are the primary means of information transmission in biological neurons. They implement spatiotemporal information processing through an event-driven threshold-triggering mechanism (when the sum of synaptic inputs reaches a critical value), ensuring a balance between signal transmission reliability and energy

efficiency.



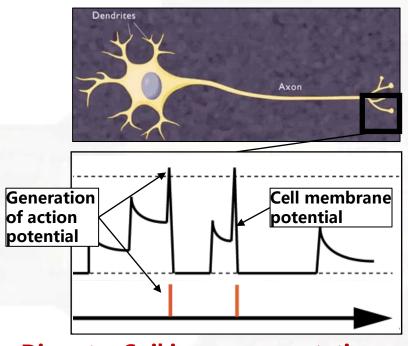


Action potential illustration: A brief and specially shaped transmembrane potential pulse generated when the cell membrane at resting membrane potential is subjected to an appropriate stimulus.

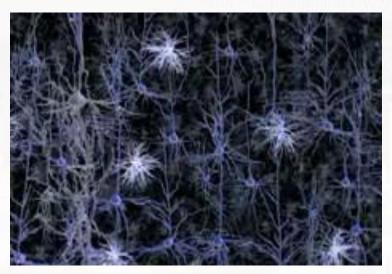


Event-driven schematic: When an electrical signal (action potential) reaches the threshold, it triggers a pulse and transmits information directionally through synaptic release of chemical transmitters.

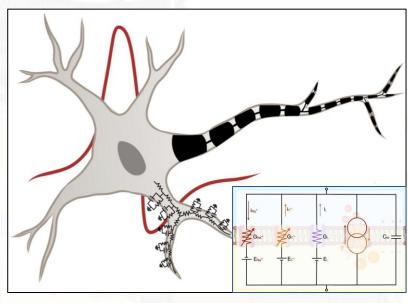
Biological Neuron



Discrete Spiking representation:
An action potential is expressed in an allor-none manner.

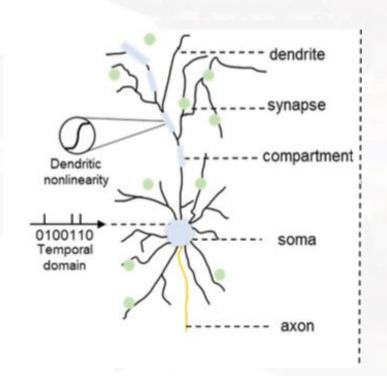


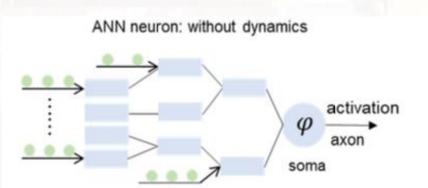
Asynchronous spiking information transmission: Whether the current neuron transmits information is unrelated to whether other neurons transmit information; it only depends on whether the threshold of the current neuron is triggered.

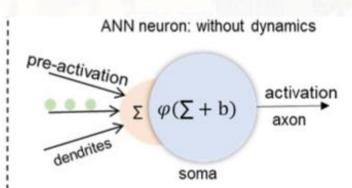


Equivalent circuit

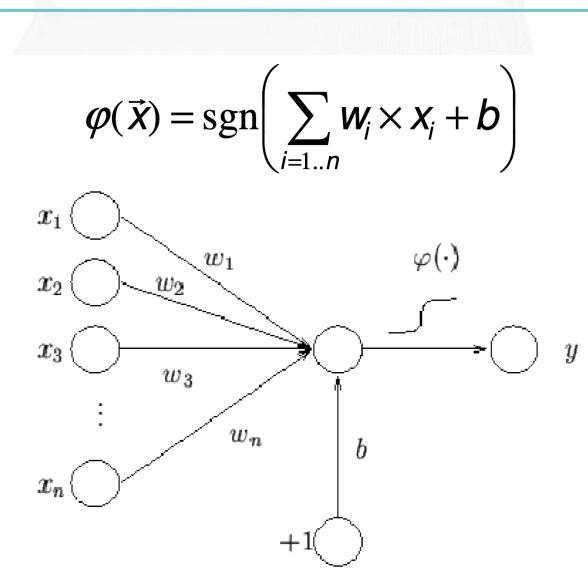
Computational Neuron







Perception

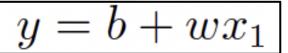


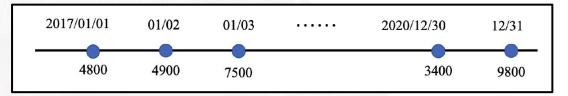
Example: Internet Traffic Prediction

- Suppose someone wants to make money through a video platform; they would care about whether the channel has traffic, so they would know their potential earnings.
- Assume that the backend can see a lot of relevant information, such as the number of people who like posts each day, the number of subscribers, and the number of views.
- Based on all the past information of a channel, it is possible to predict the number of views for tomorrow.
- Find a function whose input is the backend information and whose output is the total number of views the channel will have the next day.

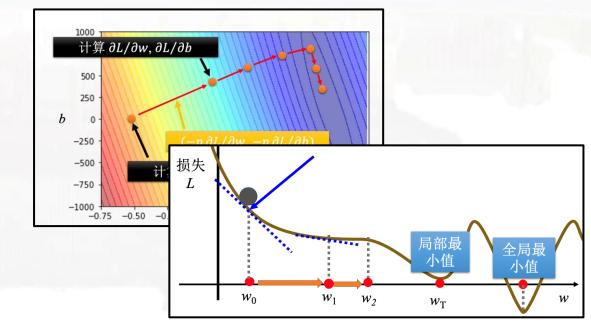
Solution: Three Steps

- Design a function with unknown parameters
 - \square model: f, feature: x_1
 - parameter: b, w
 - \square weight: w , bias: b
- Define loss function: *L*
 - Mean Absolute Error, MAE: $e = |\hat{y} y|$
 - Mean Squared Error, MSE: $e = (\hat{y} y)^2$
 - cross entropy
- Solve an optimization problem
 - global minimum and local minimum

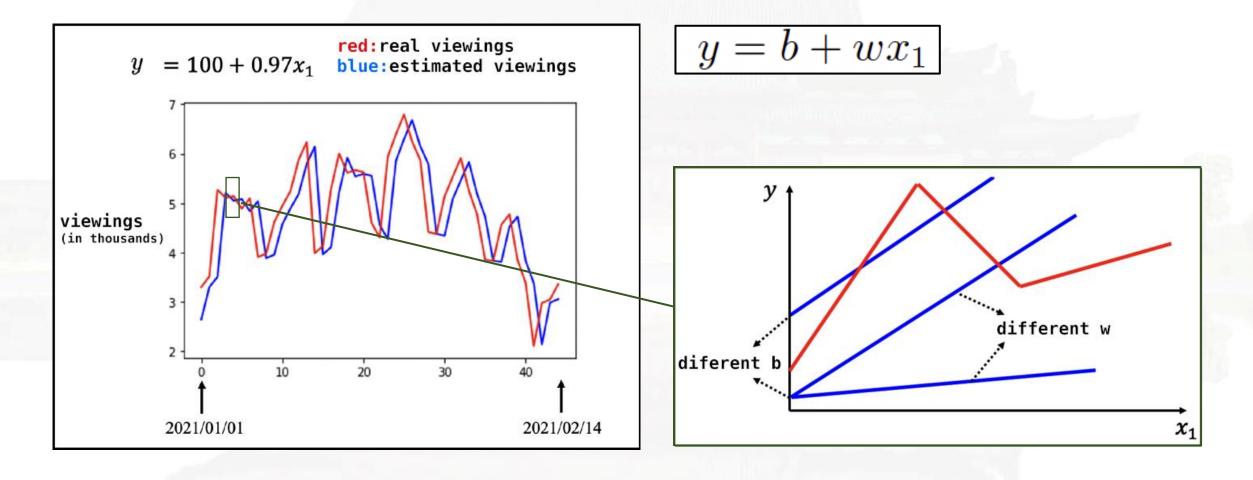


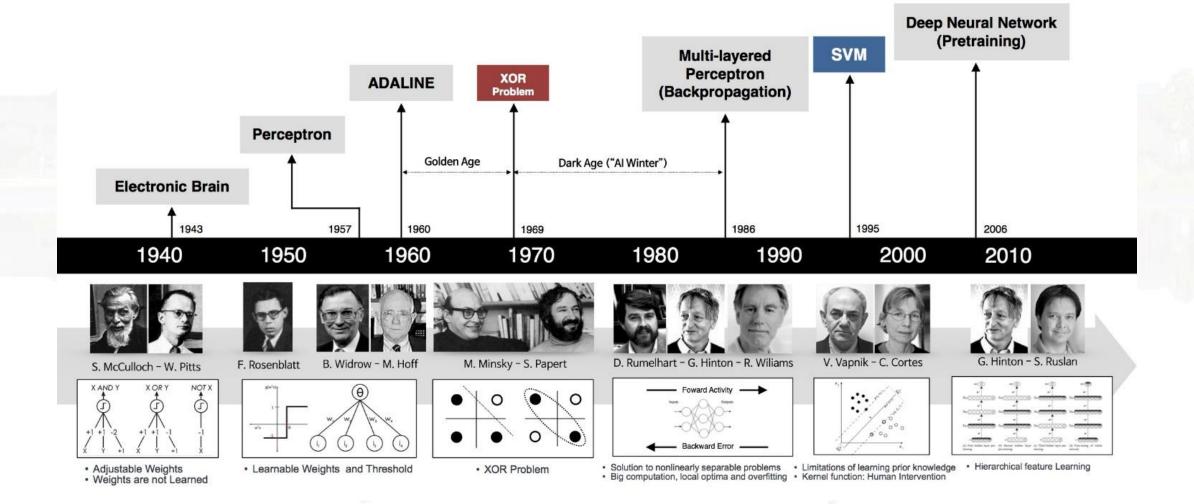


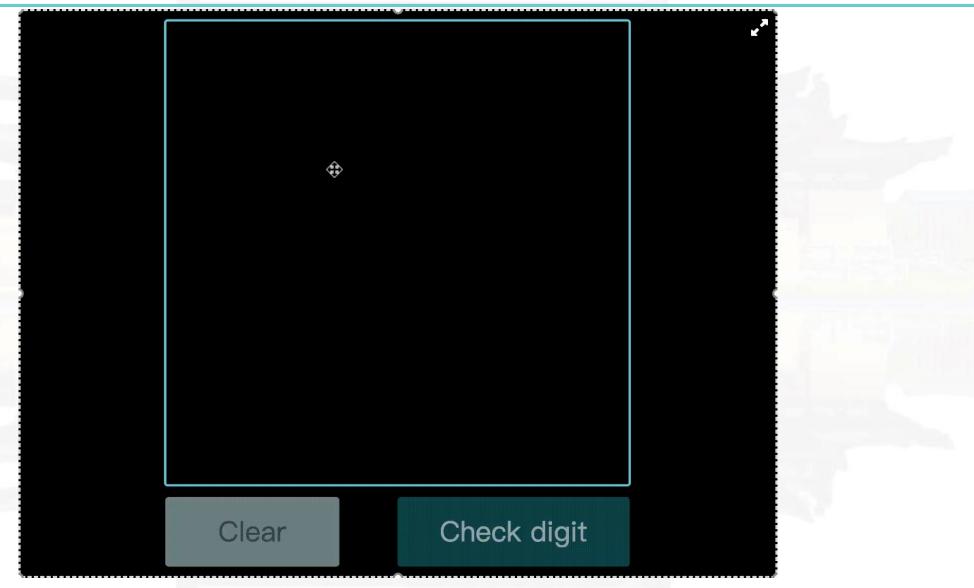
$$\hat{y} = 500 + 1x_1$$
 $e_1 = |y - \hat{y}| = 400$
 $e_2 = |y - \hat{y}| = 2100$ $L = \frac{1}{N} \sum_{n} e_n$



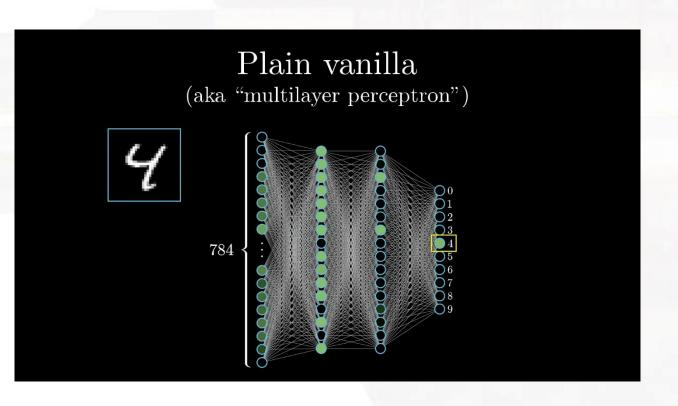
Advantage of Perception

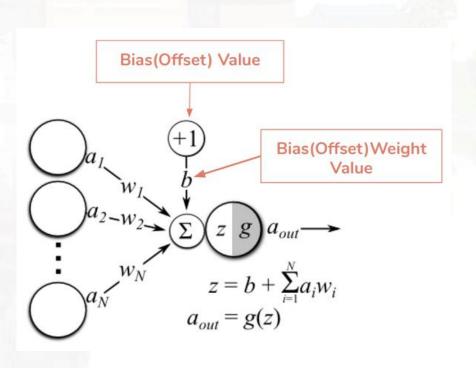




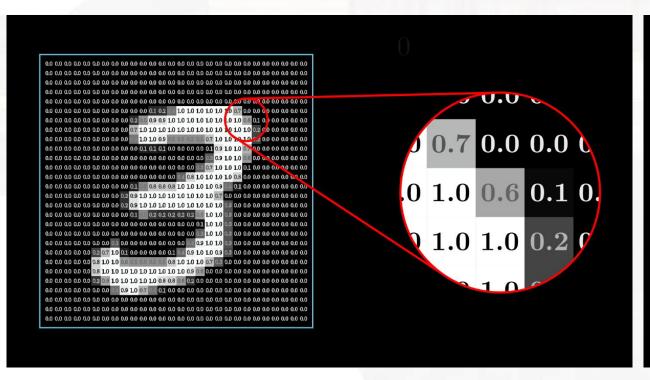


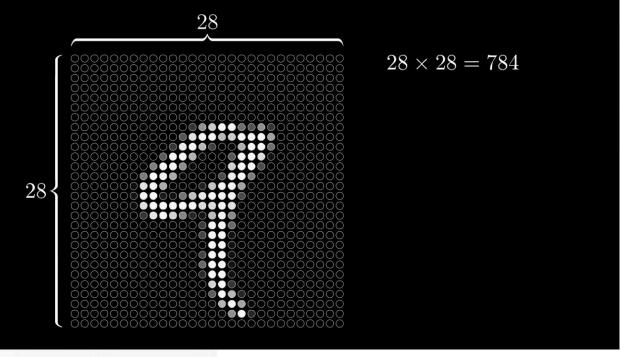
- Understand MLP, understand everything
 - ☐ A few layers of neurons linked together.



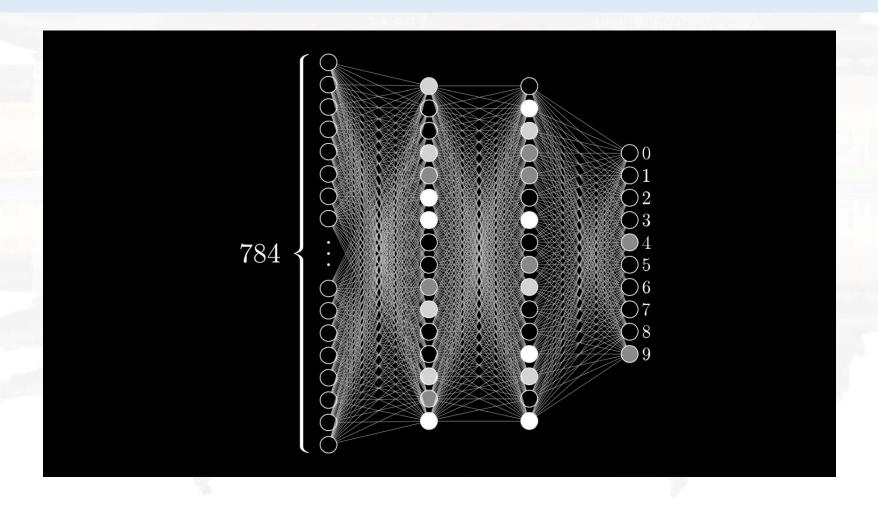


- Neuron: a thing that holds a number
 - □ represent the inputs and outputs of our network (the images and digit predictions) in terms of these neuron values

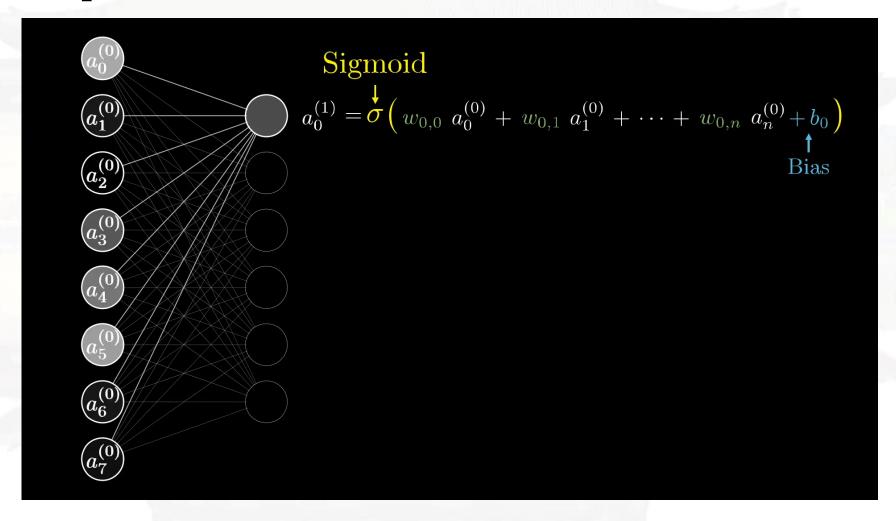


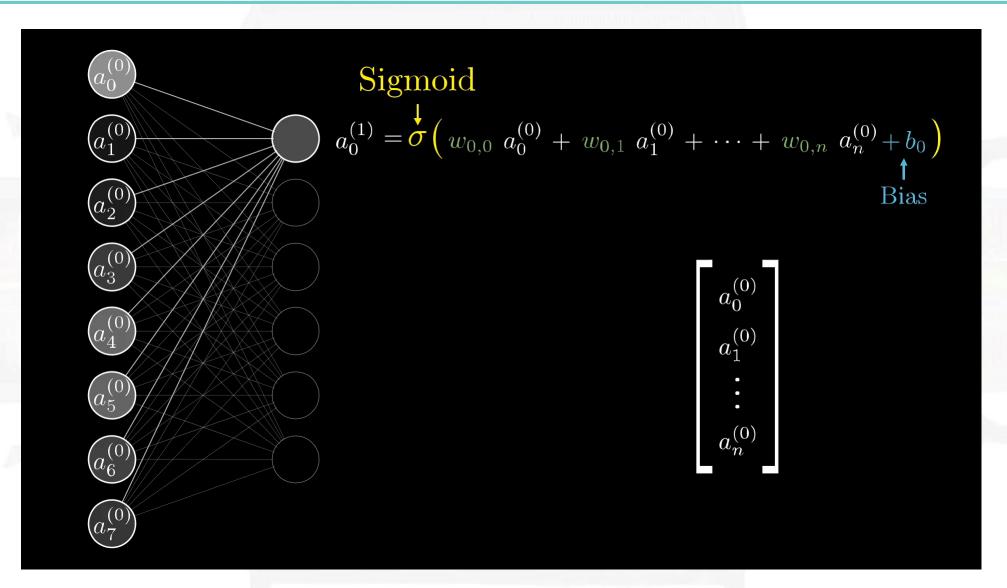


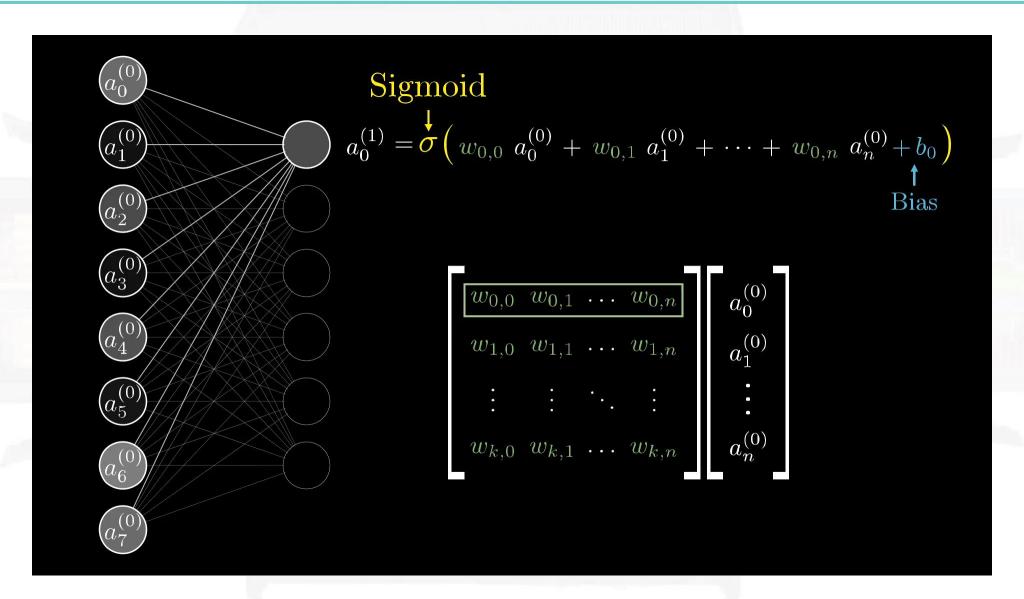
what kind of digit does this network think it's looking at? How certain does it feel?

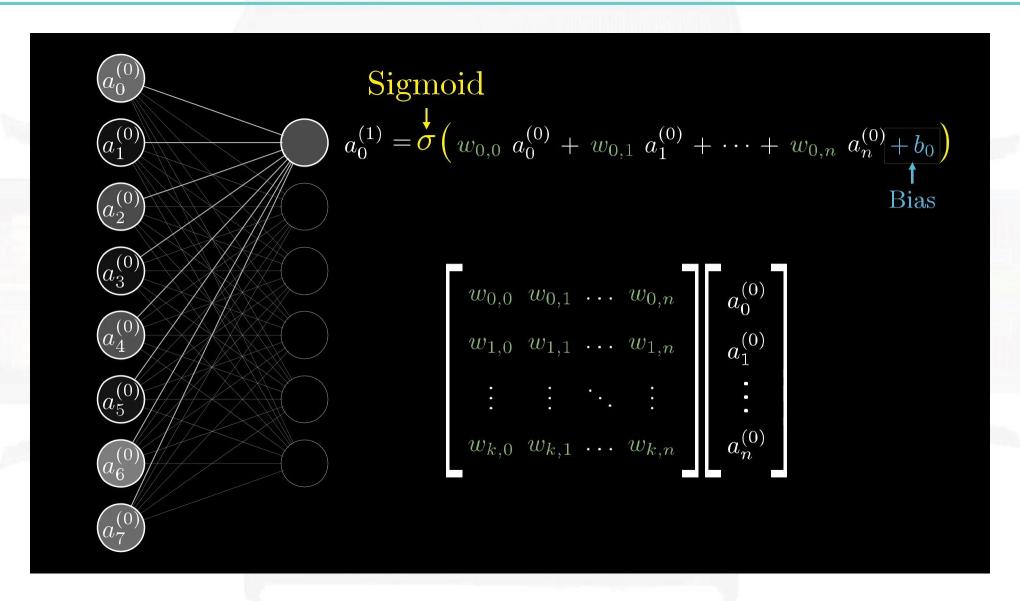


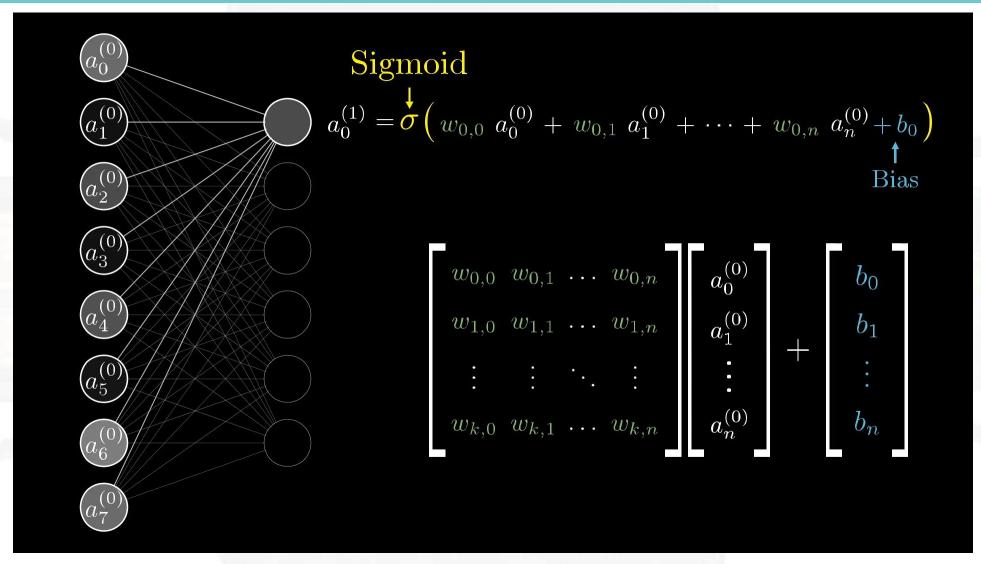
■ More Compact Notation

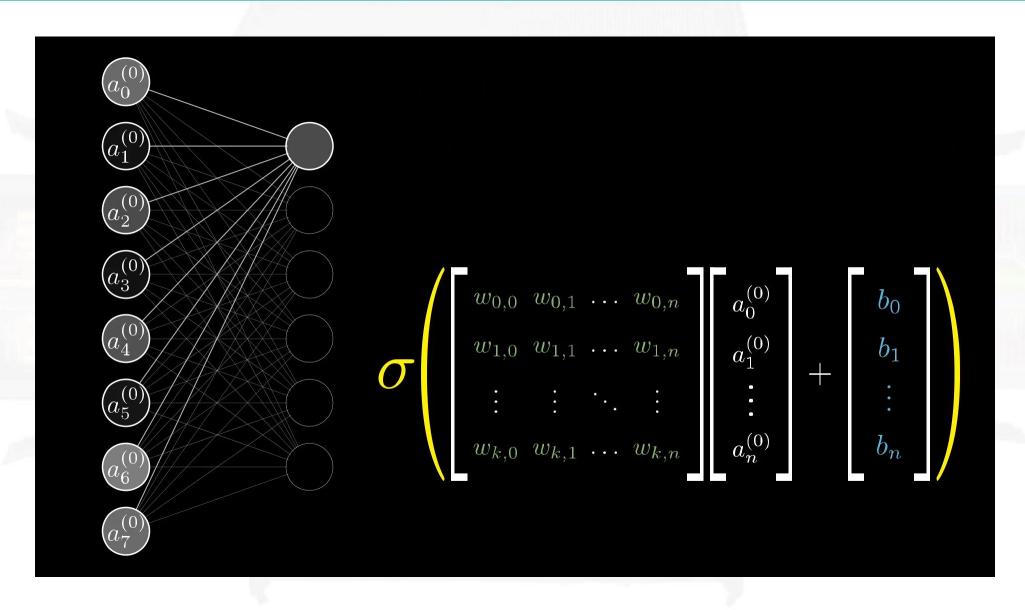




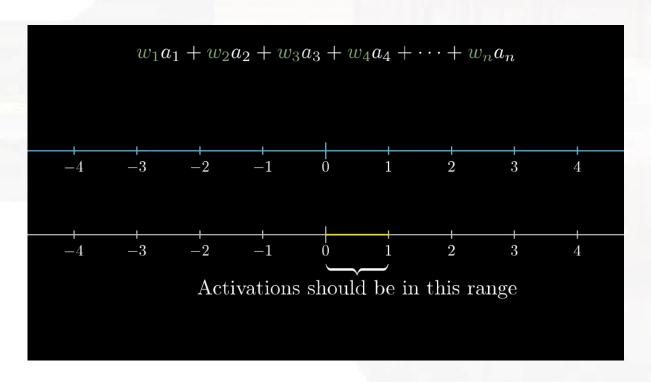


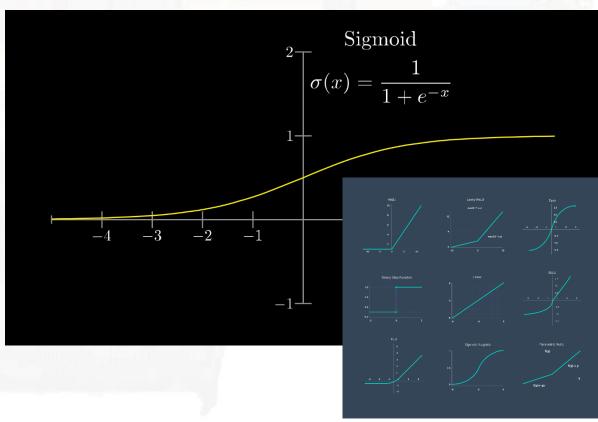






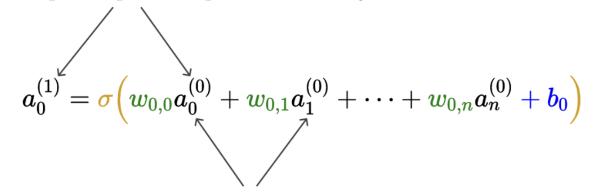
■ The result of the weighted sum like this can be any number, but for this network we want the activations to be values between 0 and 1.



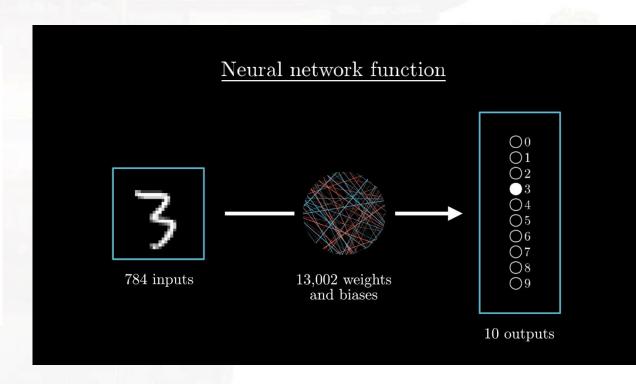


■ Formulated function

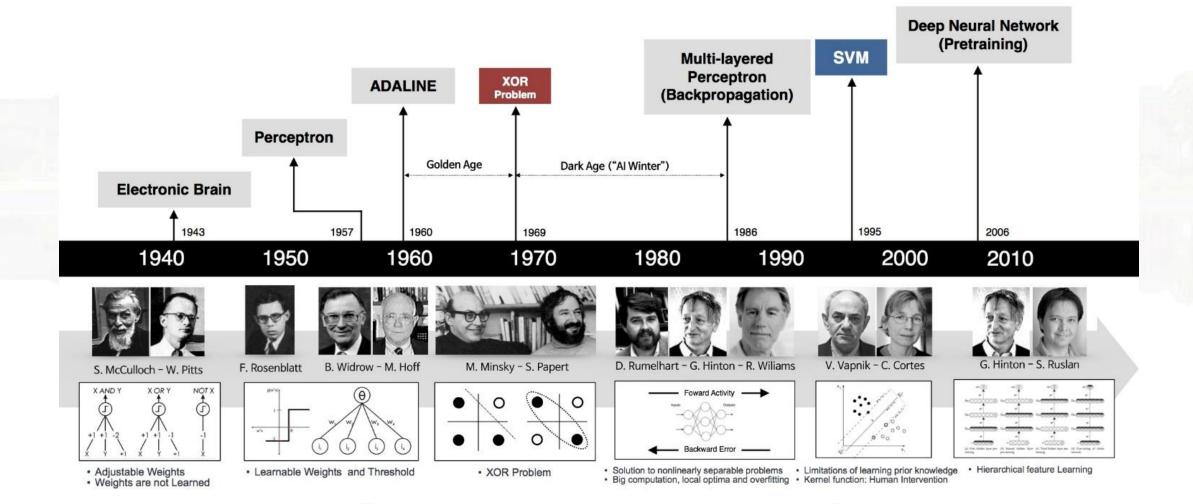
Superscript corresponds to the layer

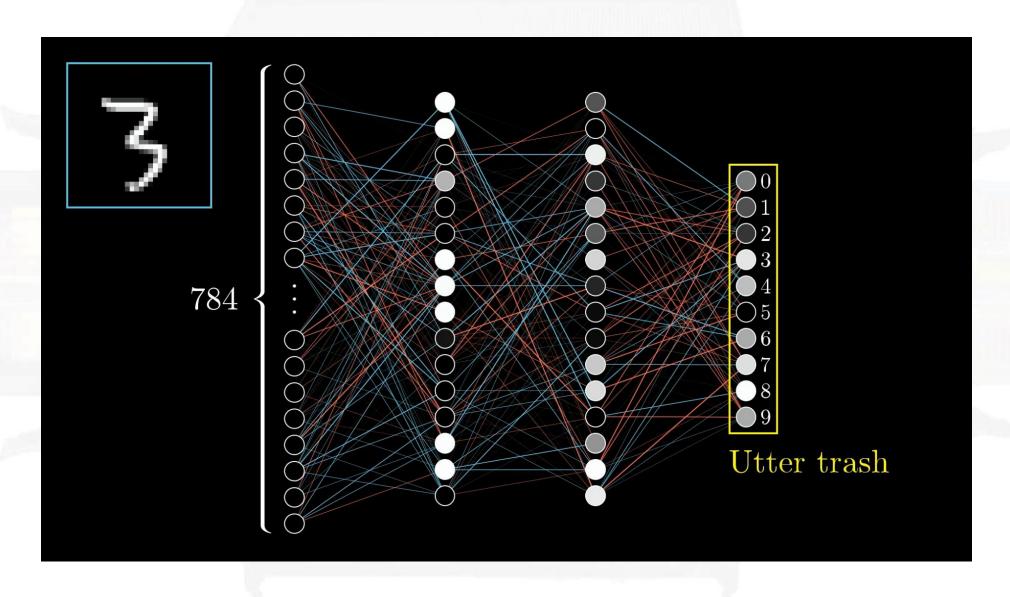


Subscript corresponds to a neuron in the layer

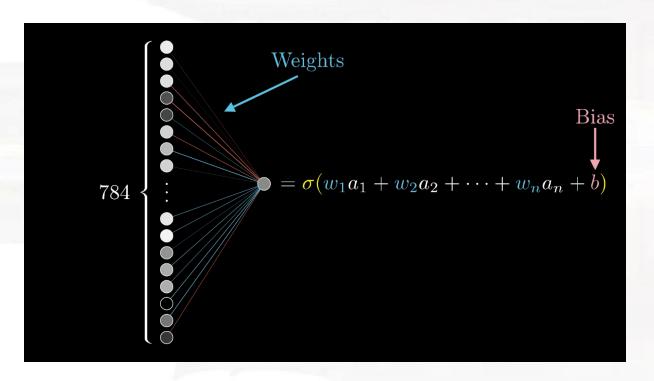


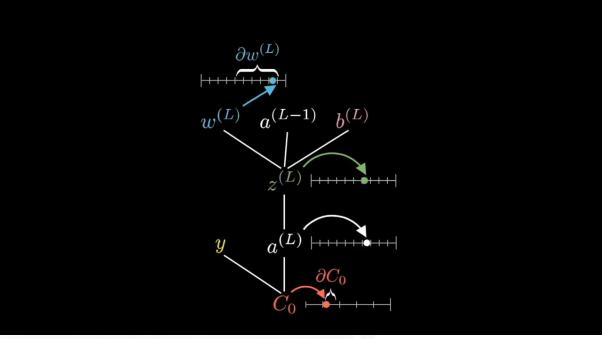
Backpropagation



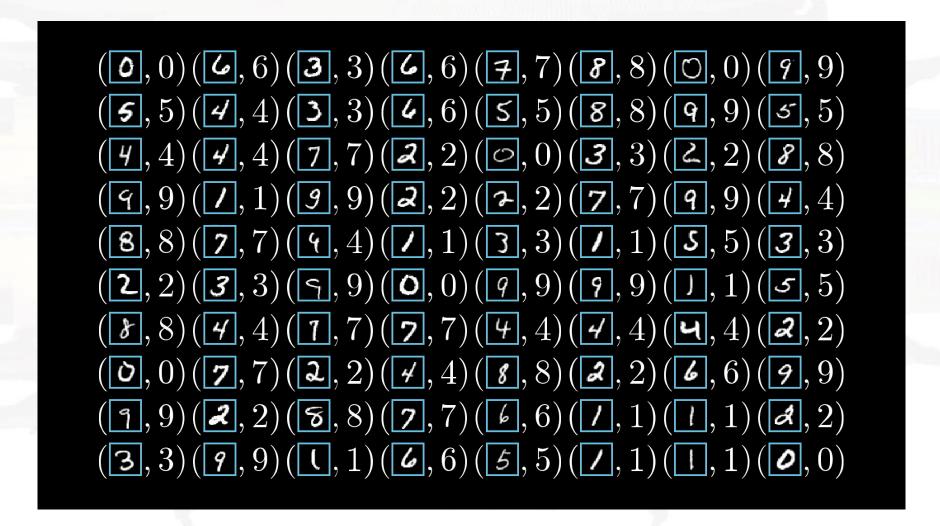


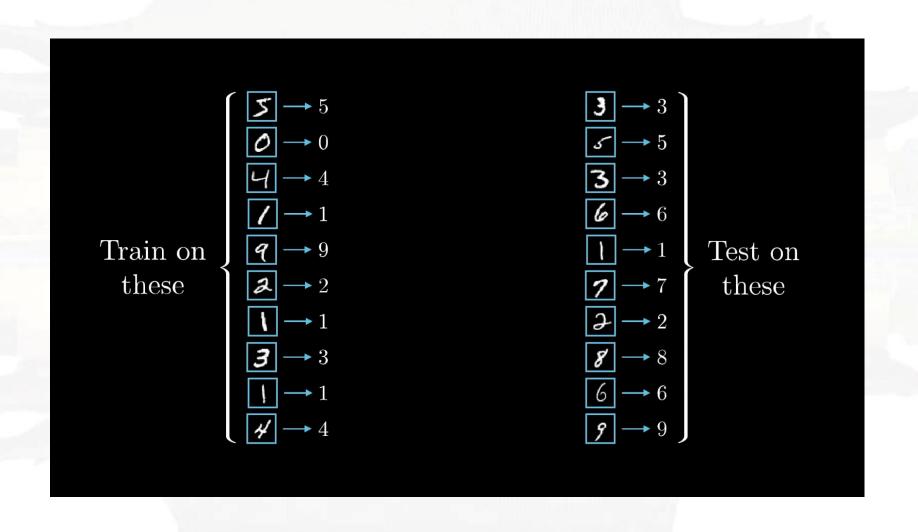
■ The behavior of the network depends on its weights and biases.



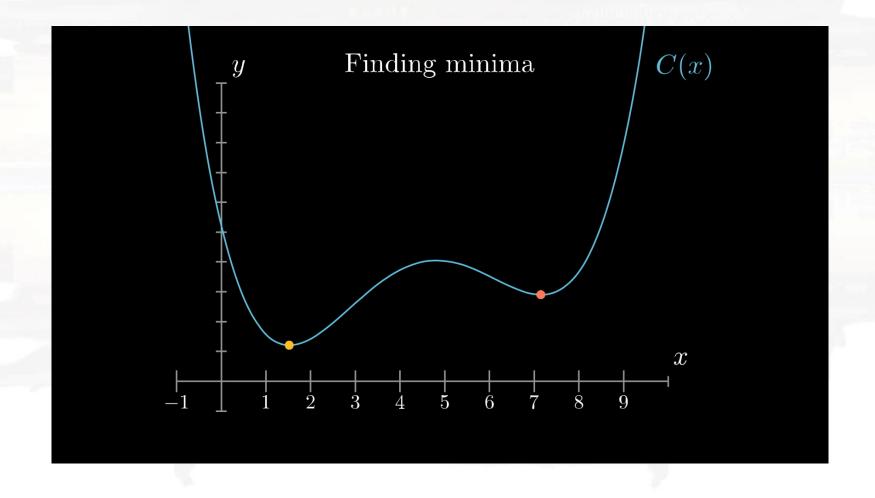


Data Preparation

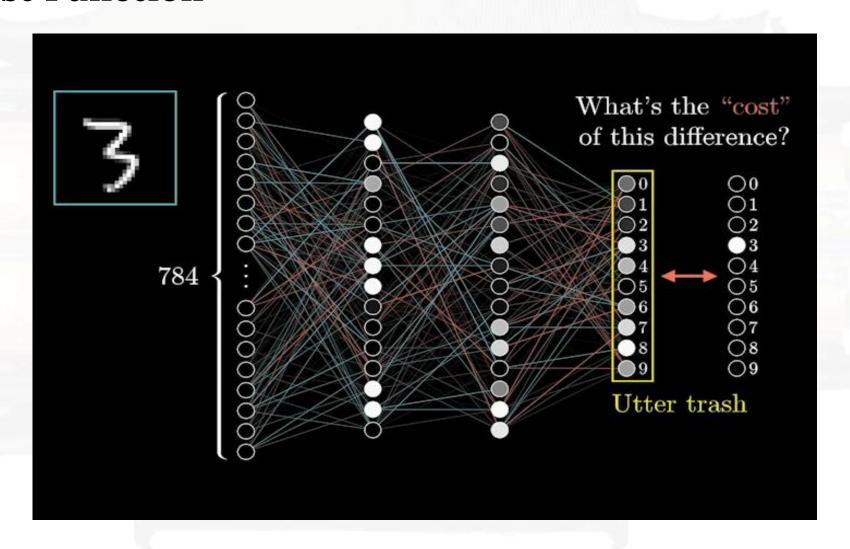


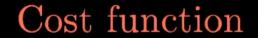


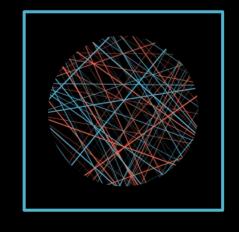
finding the minimum of a specific function



■ The Cost Function







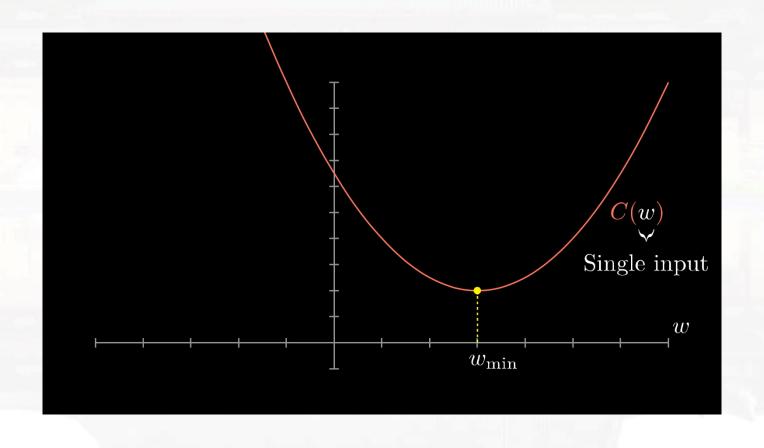
13,002 weights and biases



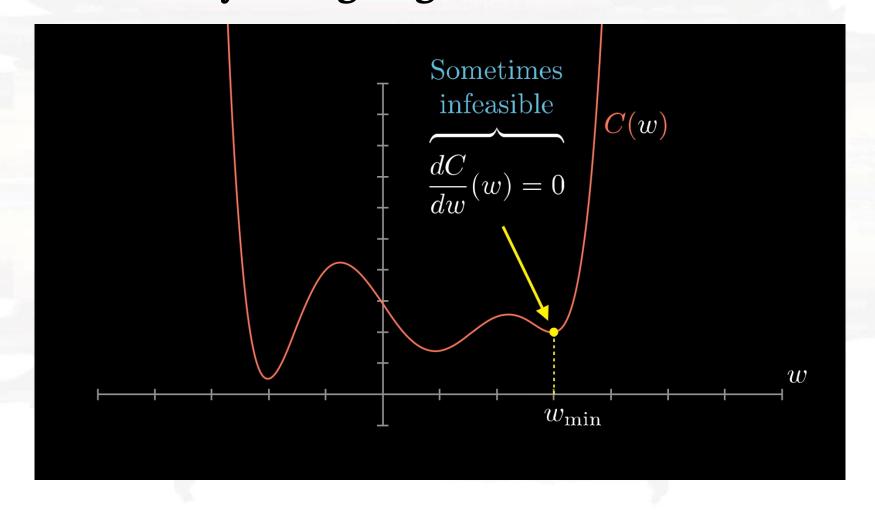
Lots of training data

3.37

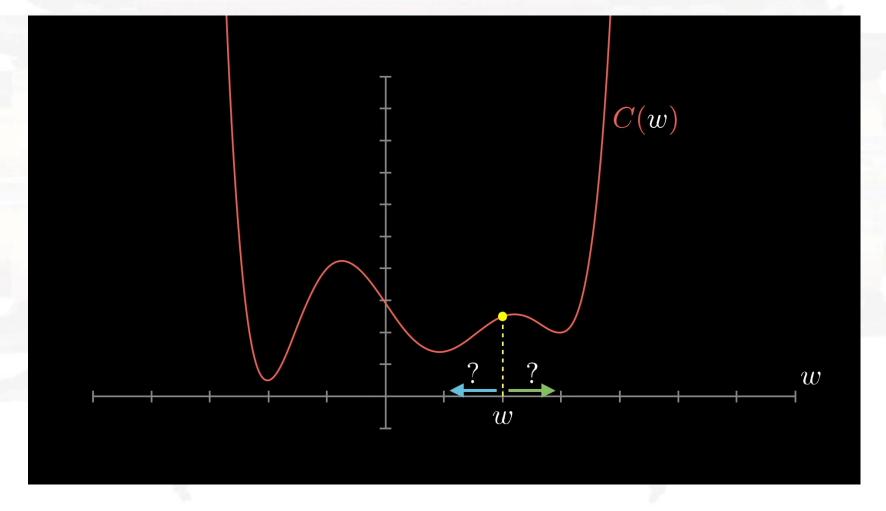
One number



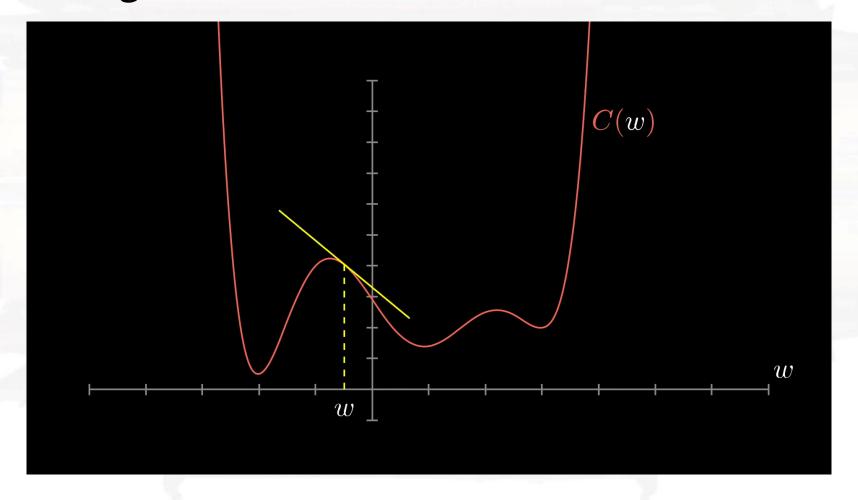
For a complicated cost function, computing the exact minimum directly isn't going to work.



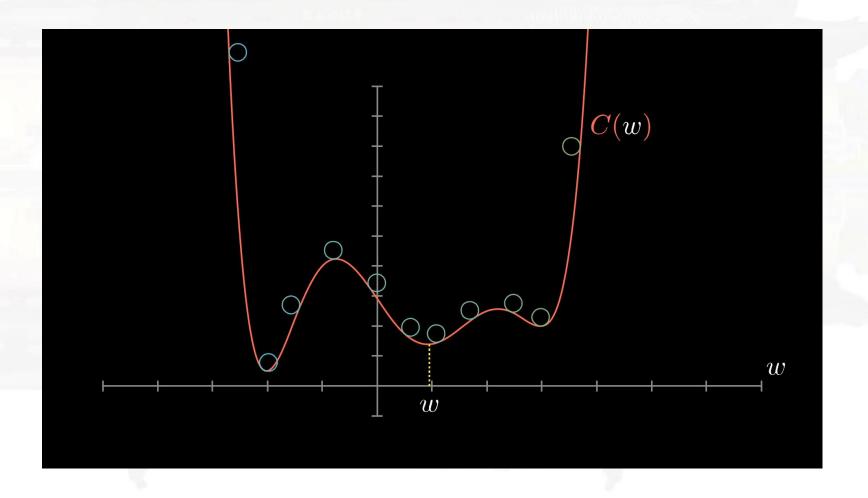
■ By following the slope (moving in the downhill direction), we approach a local minimum.



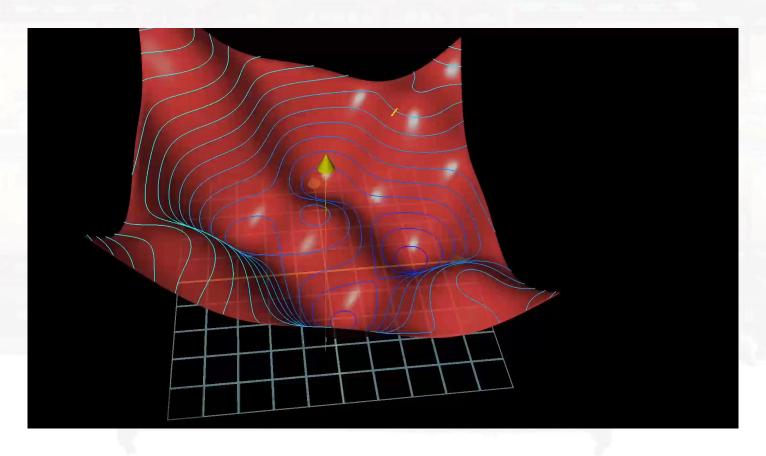
■ As the slope gets shallower, take smaller steps to avoid overshooting the minimum.



■ Moving the input position according to the slope is a lot like a ball rolling down a hill.

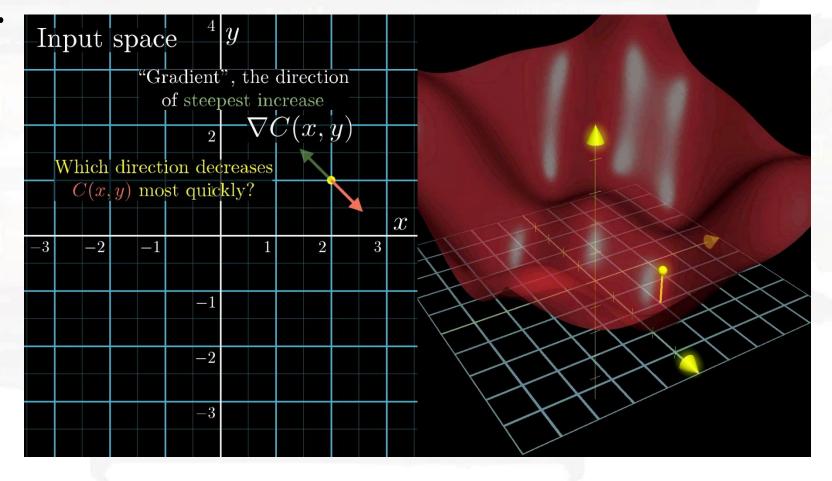


- We can imagine minimizing a function that takes two inputs
- Gradient descent just means walking in the downhill direction to minimize the cost function.

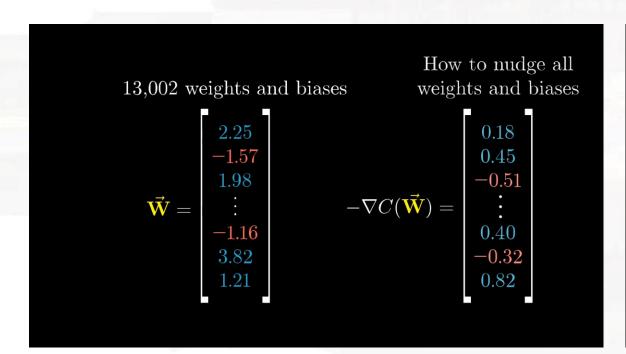


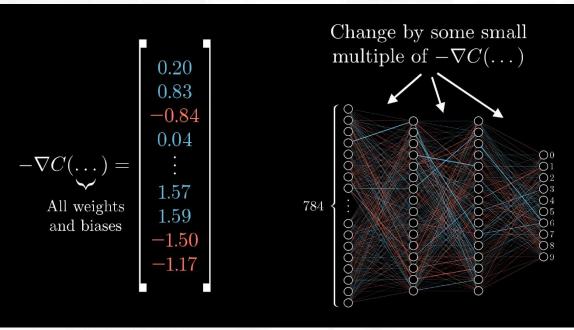
■ The gradient, $\nabla C \nabla C$, gives the uphill direction, so the negative of the gradient, $-\nabla C - \nabla C$, gives the downhill

direction.

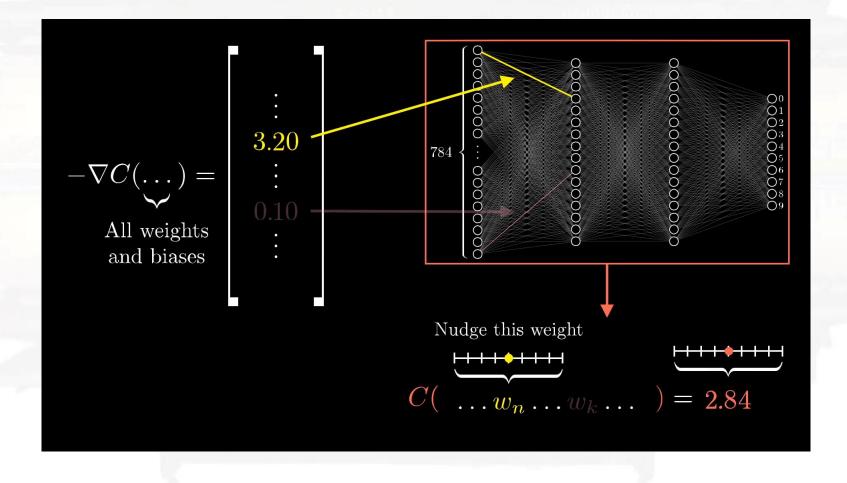


■ Another Way to Think About The Gradient



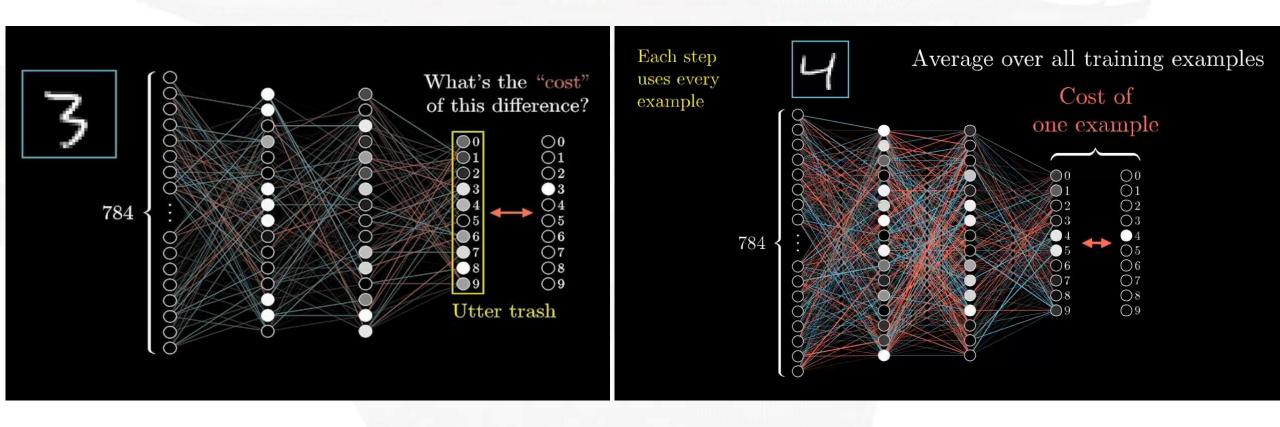


■ Changing a weight that has a larger magnitude in the negative gradient vector has a bigger effect on the cost.



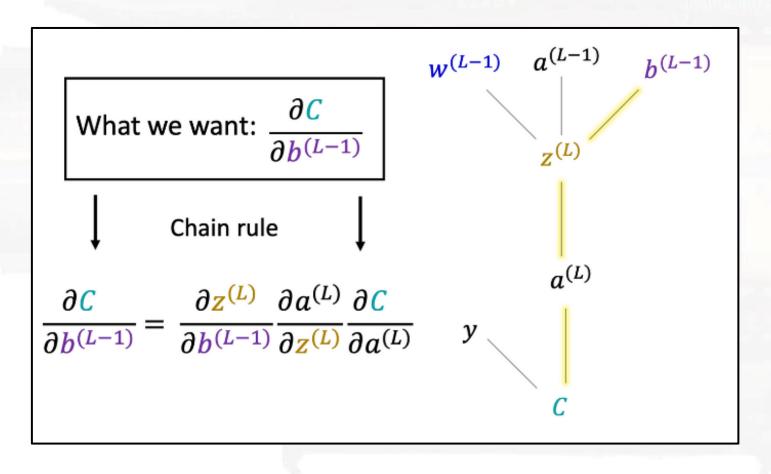
Forward and Backward

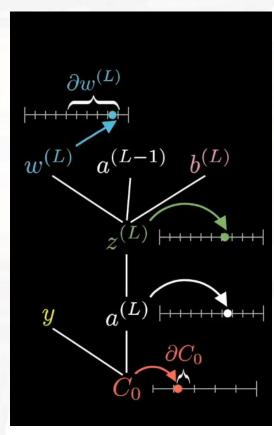
- Calculate the prediction error for training data
- Update model parameters based on the error



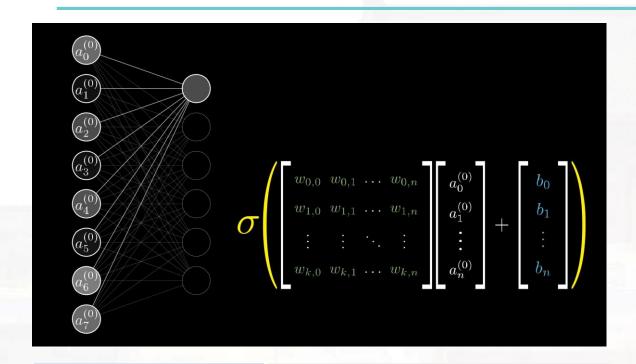
Backpropagation

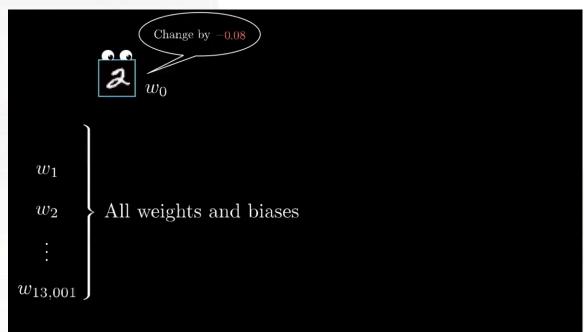
- Approximate partial derivatives based on the chain rule
- Solving neural network parameters based on gradient descent





Chain Rule



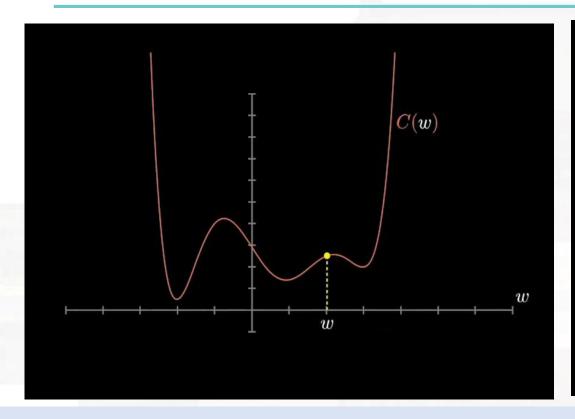


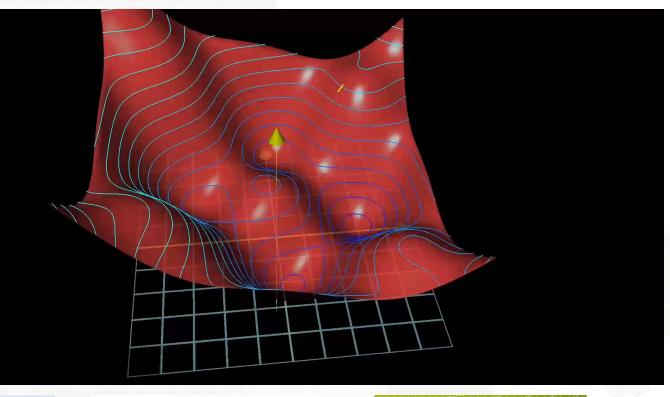
- Matrix operations form
- sample-wise and parameter-wise differentiation

$$egin{aligned} rac{\partial C_0}{\partial oldsymbol{w}^{(L-1)}} &= rac{\partial z^{(L-1)}}{\partial oldsymbol{w}^{(L-1)}} rac{\partial a^{(L-1)}}{\partial z^{(L-1)}} rac{\partial z^{(L)}}{\partial a^{(L-1)}} rac{\partial a^{(L)}}{\partial z^{(L)}} rac{\partial C_0}{\partial a^{(L)}} \ & \ C_0 &= \left(a^{(L)} - oldsymbol{y}
ight)^2 & \longrightarrow & rac{\partial C_0}{\partial a^{(L)}} = 2\left(a^{(L)} - oldsymbol{y}
ight) \ & \ a^{(L)} &= \sigma\left(z^{(L)}
ight) & \longrightarrow & rac{\partial a^{(L)}}{\partial z^{(L)}} = \sigma'\left(z^{(L)}
ight) \ & \ z^{(L)} &= oldsymbol{w}^{(L)} a^{(L-1)} + oldsymbol{b}^{(L)} & \longrightarrow & rac{\partial z^{(L)}}{\partial a^{(L-1)}} = oldsymbol{w}^{(L)} \ & \ z^{(L)} &= oldsymbol{w}^{(L)} a^{(L-1)} + oldsymbol{b}^{(L)} & \longrightarrow & rac{\partial z^{(L)}}{\partial a^{(L)}} = a^{(L-1)} \ & \ z^{(L)} &= oldsymbol{w}^{(L)} a^{(L-1)} + oldsymbol{b}^{(L)} & \longrightarrow & rac{\partial z^{(L)}}{\partial a^{(L)}} = a^{(L-1)} \ & \ z^{(L)} &= oldsymbol{w}^{(L)} a^{(L-1)} + oldsymbol{b}^{(L)} & \longrightarrow & rac{\partial z^{(L)}}{\partial a^{(L)}} = a^{(L-1)} \ & \ z^{(L)} &= a^{(L-1)} \ &= a^{(L-1)} \ & \ z^{(L)} &= a^{(L-1)} \ &= a^{(L-1)}$$

$$-\nabla C(\vec{\mathbf{W}}) = egin{array}{c} 0.31 & w_0 ext{ should increase somewhat} \ 0.03 & w_1 ext{ should increase a little} \ w_2 ext{ should decrease a lot} \ dots \ 0.78 & w_{13,000} ext{ should increase a lot} \ w_{13,001} ext{ should increase a lot} \ w_{13,002} ext{ should increase a lot} \ w_{13,002} ext{ should increase a little} \ \end{array}$$

Gradient Descent

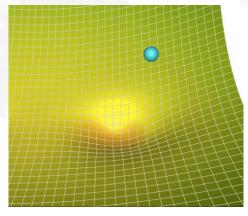




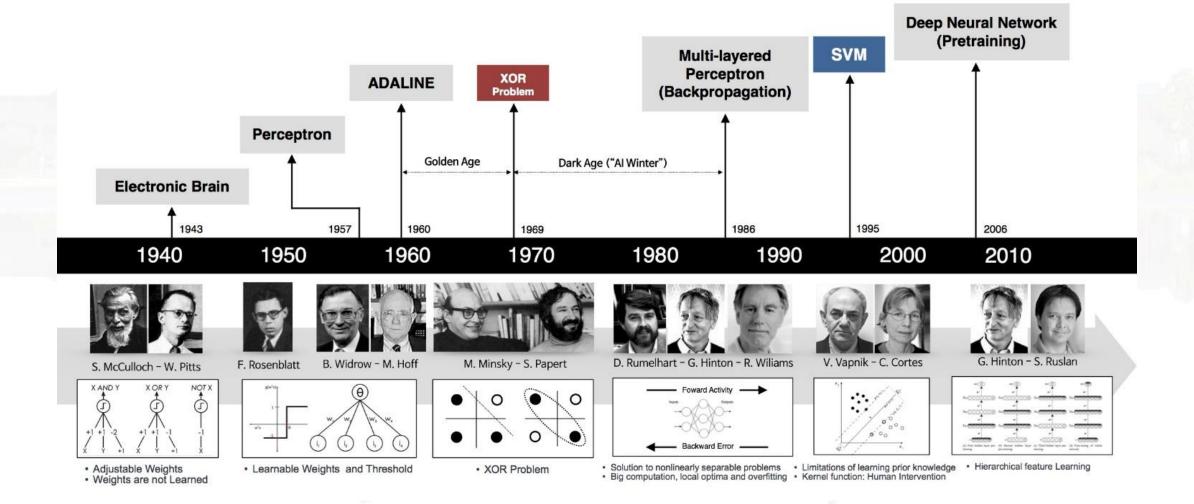
Algorithm

- Calculate 7C based on chain rules
- Move all parameters toward $-\nabla C$ slightly
- Repeat all the steps above

- (randomly) select θ_0
- get gradient $m{g}_0 =
 abla L_1(m{ heta}_0)$ update $m{ heta}_1 \leftarrow m{ heta}_0 \eta m{g}_0$
- get gradient $m{g}_1 =
 abla L_2(m{ heta}_1)$ update $m{ heta}_2 \leftarrow m{ heta}_1 \eta m{g}_1$
- get gradient $m{g}_2 =
 abla L_3(m{ heta}_2)$ update $m{ heta}_3 \leftarrow m{ heta}_2 \eta m{g}_2$



The Problem of Backpropagation



The History of Backpropagation

- The time when the relevant ideas were proposed
 - 1986, the term was widely known
 - 1974, the first time used to train neural network
 - 1960, The basic knowledge of backpropagation has been accepted and widely used.
 - 2006, Introduction of pre-training and fine-tuning mechanisms
- Issues During Training
 - Gradient vanishing
 - Gradient exploding

Published: 09 October 1986

Learning representations by back-propagating errors

David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

Nature **323**, 533–536 (1986) Cite this article

110k Accesses | 14712 Citations | 378 Altmetric | Metrics

Gradient Theory of Optimal Flight Paths

HENRY J. KELLEY¹

Grumman Aircraft Engineering Corp. Bethpage, N. Y.

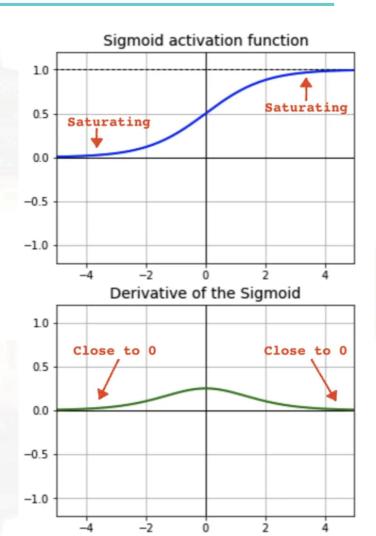
An analytical development of flight performance optimization according to the method of gradients or "method of steepest descent" is presented. Construction of a minimizing sequence of flight paths by a stepwise process of descent along the local gradient direction is described as a computational scheme. Numerical application of the technique is illustrated in a simple example of orbital transfer via solar sail propulsion. Successive approximations to minimum time planar flight paths from Earth's orbit to the orbit of Mars are presented for cases corresponding to free and fixed boundary conditions on terminal velocity components.

Gradient Vanishing	Gradient Exploding
The weights are almost 0	Weights with NaN value
The weights near the output layer update quickly, while the weights in the input layer hardly update.	Weights increase explosively
Converges very slowly	Instable performance
Stop learning	Performs poorly on the training set

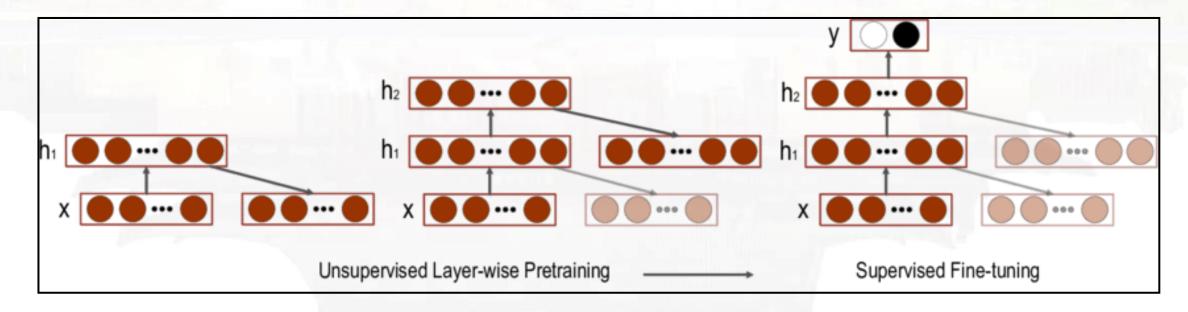
$$rac{\partial C_0}{\partial w^{(L-1)}} = rac{\partial z^{(L-1)}}{\partial w^{(L-1)}} rac{\partial a^{(L-1)}}{\partial z^{(L-1)}} rac{\partial z^{(L)}}{\partial a^{(L-1)}} rac{\partial a^{(L)}}{\partial z^{(L)}} rac{\partial C_0}{\partial z^{(L)}}$$

$$a^{(L)} = \sigma\left(z^{(L)}
ight) \qquad \qquad \longrightarrow \qquad rac{\partial a^{(L)}}{\partial z^{(L)}} = \sigma'\left(z^{(L)}
ight)$$

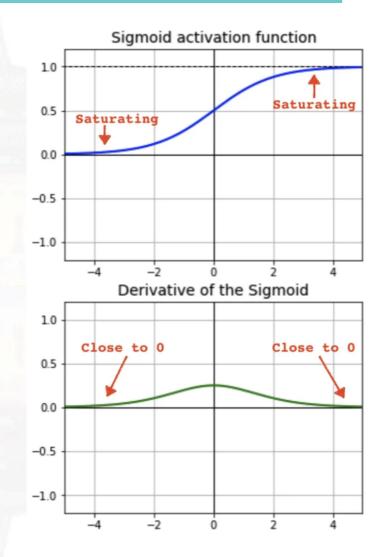
$$z^{(L)} = oldsymbol{w^{(L)}} a^{(L-1)} + oldsymbol{b^{(L)}} \longrightarrow egin{array}{c} rac{\partial z^{(L)}}{\partial a^{(L-1)}} = oldsymbol{w^{(L)}} \ rac{\partial z^{(L)}}{\partial a^{(L-1)}} = oldsymbol{w^{(L)}} \end{array}$$

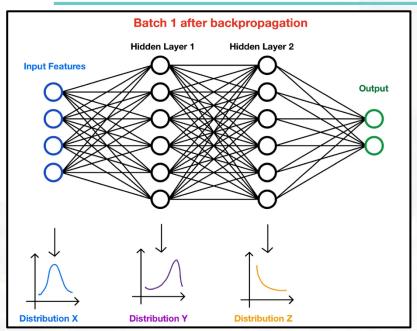


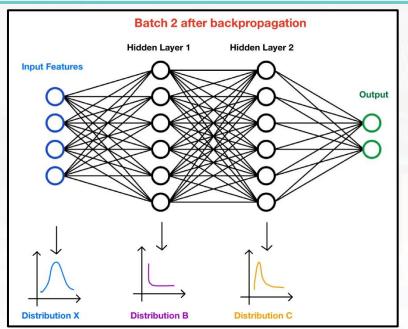
- Use greedy unsupervised learning to find a sensible set of weights one layer at a time. Then fine-tune with backpropagation.
 - ☐ The precious information in the labels is only used for the final fine-tuning.
 - We do not start backpropagation until we already have sensible weights that already do well at the task.



- 1. Zero Initialization: Initialize all the weights and biases to zero. This is not generally used in deep learning as it leads to symmetry in the gradients, resulting in all the neurons learning the same feature.
- 2. *Random Initialization:* Initialize the weights and biases randomly from a uniform or normal distribution. This is the most common technique used in deep learning.
- 3. *Xavier Initialization:* Initialize the weights with a normal distribution with mean 0 and variance of sqrt(1/n), where n is the number of neurons in the previous layer. This is used for the sigmoid activation function.
- 4. *He Initialization:* Initialize the weights with a normal distribution with mean 0 and variance of sqrt(2/n), where n is the number of neurons in the previous layer. This is used for the ReLU activation function.
- 5. *Orthogonal Initialization:* Initialize the weights with an orthogonal matrix, which preserves the gradient norm during backpropagation.
- 6. *Uniform Initialization:* Initialize the weights with a uniform distribution. This is less commonly used than random initialization.
- 7. *Constant Initialization:* Initialize the weights and biases with a constant value. This is rarely used in deep learning.

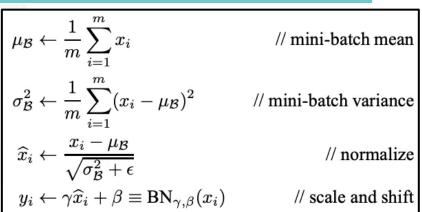


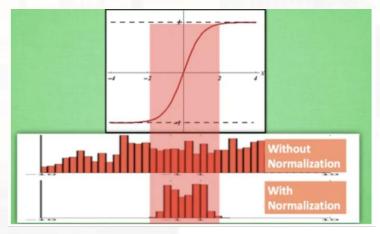


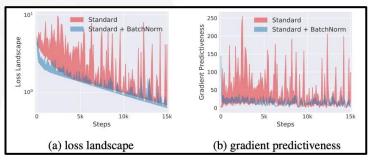


Internal Covariate Shift

- **Slow Convergence**
- **■** Gradient Vanishing

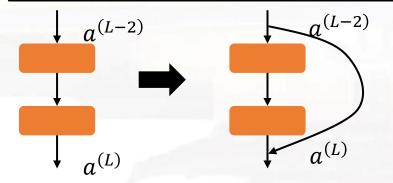






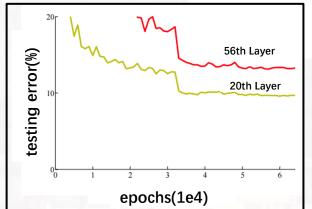
ResNets @ ILSVRC & COCO 2015 Competitions

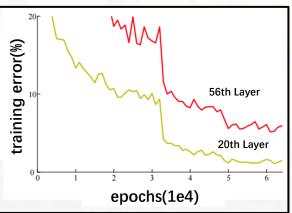
- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

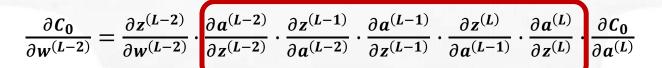


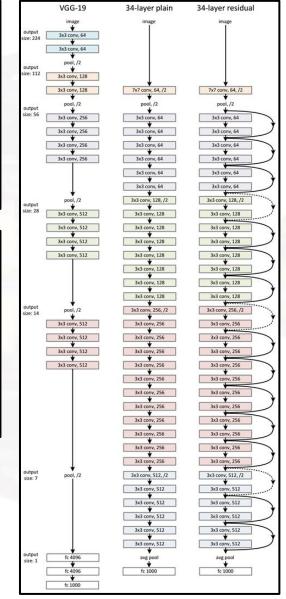
$$a^{(L)} = a^{(L-2)} + H(x)$$

$$\frac{\partial a^{(L)}}{\partial a^{(L-2)}} = 1 + \frac{\partial H(x)}{\partial a^{(L-2)}}$$

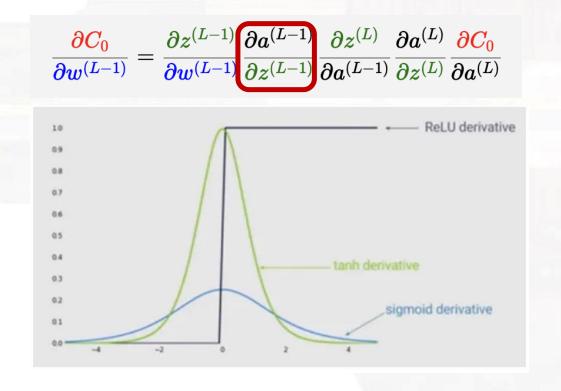


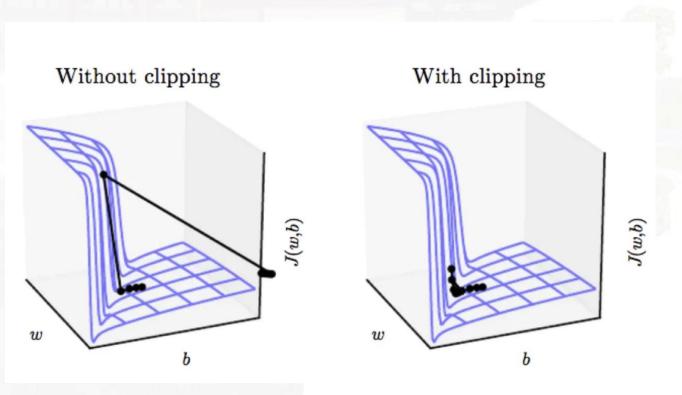






- ReLU
- Gradient clipping (gradient exploding) $\nabla C = \eta \frac{\nabla C}{|\nabla C|_2}$





Batch gradient descent

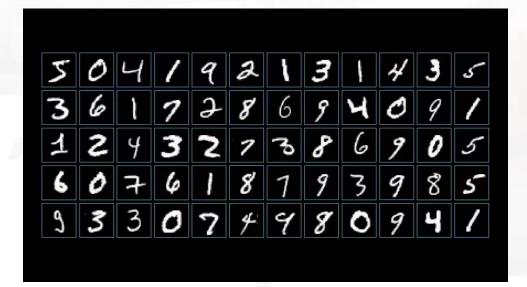
$$W = W - \eta \cdot \nabla_W C(W)$$

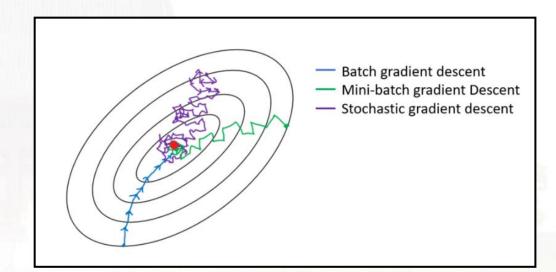
Stochastic gradient descent

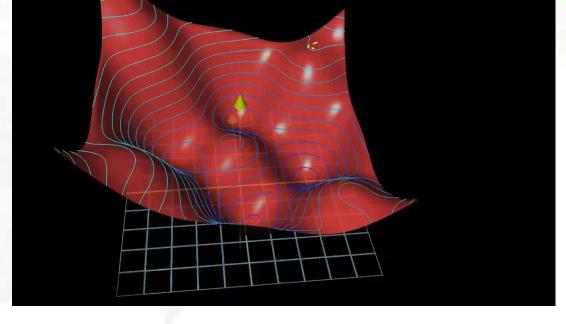
$$W = W - \boldsymbol{\eta} \cdot \nabla_{W} C(W; x^{(i)}; y^{(i)})$$

Mini-batch gradient descent

$$W = W - \eta \cdot \nabla_W C(W; x^{(i:i+n)}; y^{(i:i+n)})$$







SGDM

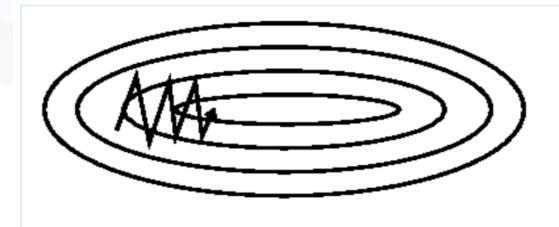
Momentum

- ☐ SGD has the problem of slow convergence in 'valley'-shaped spaces
- SGDM speeds up SGD by modifying the direction.
- Add an update direction of a past moment

$$W \leftarrow W - \eta \, \frac{\partial L}{\partial W}$$

$$V_t \leftarrow \beta V_{t-1} - \eta \, \frac{\partial L}{\partial W}$$

$$W \leftarrow W + V_t$$



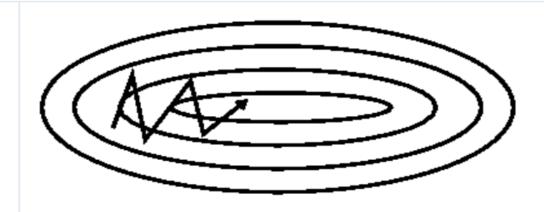


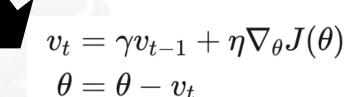
Image 3: SGD with momentum

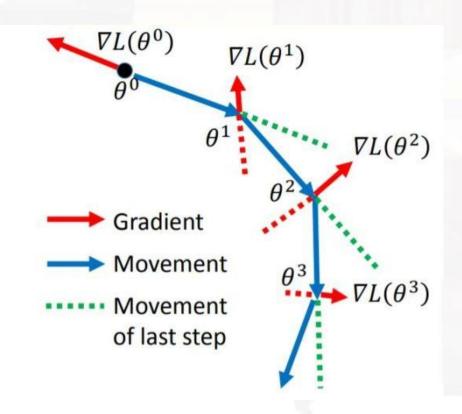
SGDM

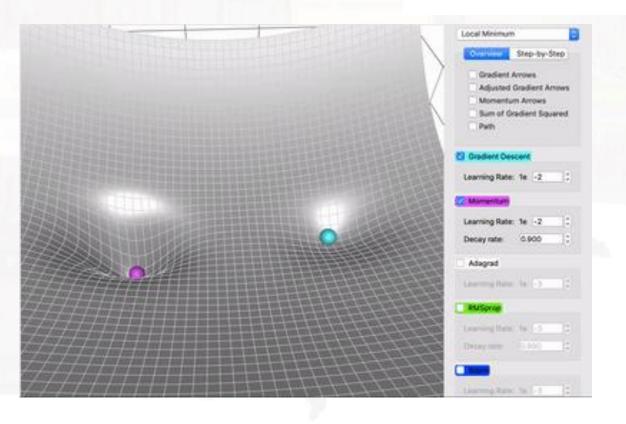
Advantage

$$heta = heta - \eta \cdot
abla_{ heta} J(heta; x^{(i:i+n)}; y^{(i:i+n)}).$$

- **■** faster convergence
- chance of escaping the local minimum





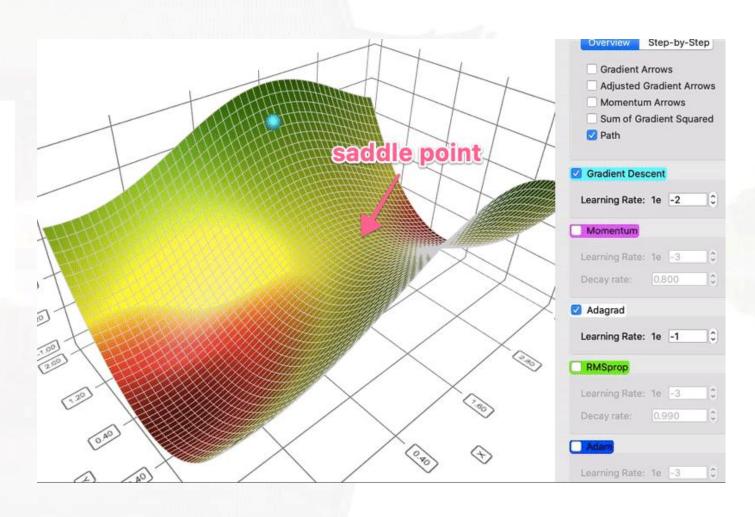


AdaGrad

$$heta_{t+1,i} = heta_{t,i} - rac{\eta}{\sqrt{G_{t,i} + \epsilon}} \cdot g_{t,i}$$

$$G_t^{(i,i)} = \sum_{ au}^t (g_{ au}^{(i)})^2$$

$$g_{t,i} =
abla_{ heta} J(heta_{t,i})$$



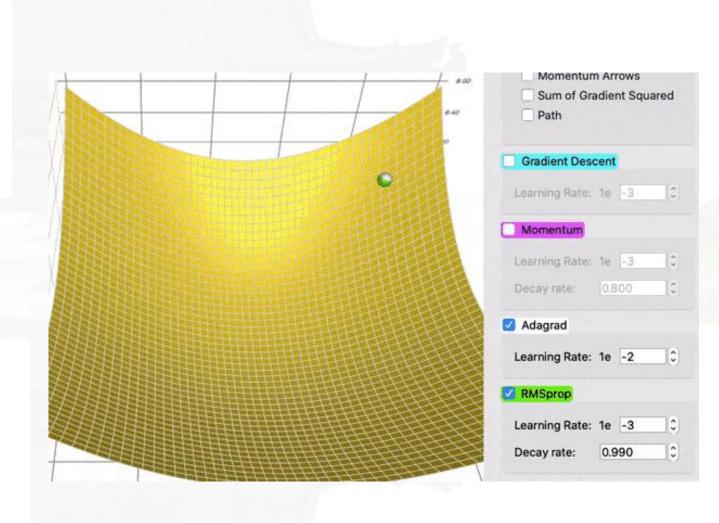
RMSProp

$$heta_{t+1,i} = heta_{t,i} - rac{\eta}{\sqrt{G_{t,i} + \epsilon}} \cdot g_{t,i}$$

$$G_t^{(i,i)} = \sum_ au^t (g_ au^{(i)})^2$$

$$g_{t,i} =
abla_{ heta} J(heta_{t,i})$$

$$E[g^2]_t = 0.9 E[g^2]_{t-1} + 0.1 g_t^2 \ heta_{t+1} = heta_t - rac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t$$



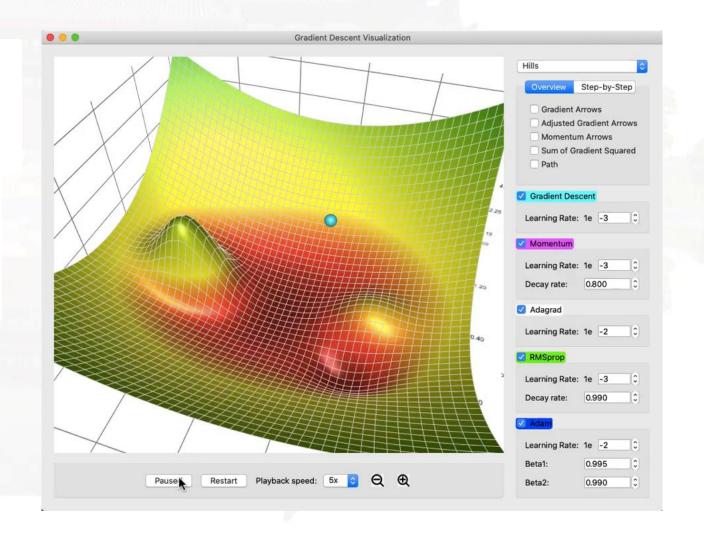
Adam(Adaptive Moment Estimation)

■ Combine SGDM and RMSProp

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t.$$

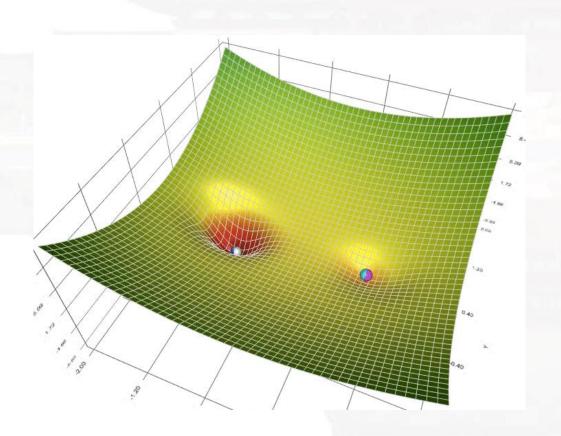
$$m_t = eta_1 m_{t-1} + (1-eta_1) g_t \ v_t = eta_2 v_{t-1} + (1-eta_2) g_t^2$$

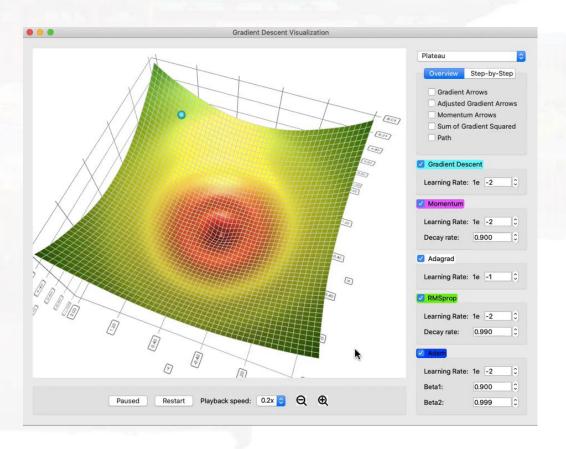
$$egin{aligned} v_t &= \gamma v_{t-1} + \eta
abla_{ heta} J(heta) \ & E[g^2]_t = 0.9 E[g^2]_{t-1} + 0.1 g_t^2 \end{aligned}$$



The Advantage of Adam

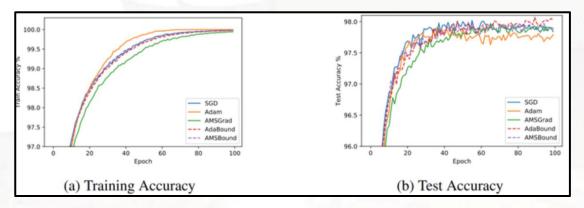
- **■** The advantage of Adaptive
- **■** The advantage of Momentum

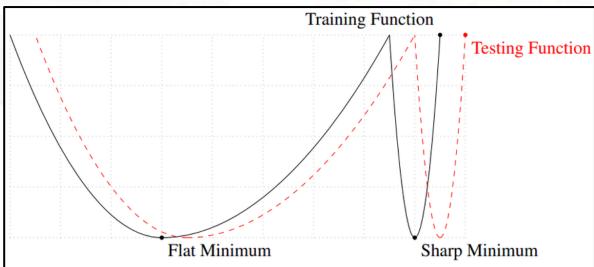


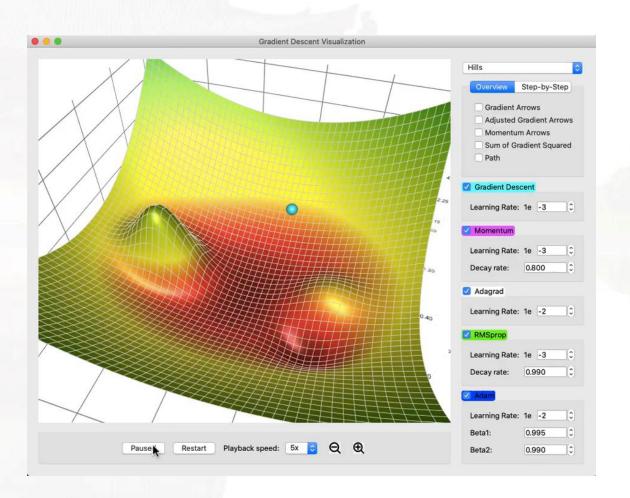


The Problem of Adam

Overfitting







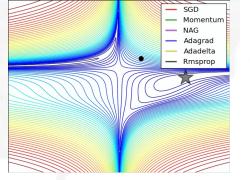
Summary

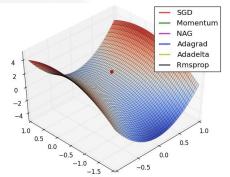
■ Adaptive vs Non Adaptive

Adaptive Method	Non-Adaptive Method
Adam, AdaGrad, RMSProp	SGDM, SGD
Difficult data, complex networks, hard to converge	Good initialization and learning rate scheduling scheme

	SGDM	Adam
Training Speed	Slow	Fast
Convergence	Good	Poor
Stability	Good	Poor
Generalization	Good	Poor

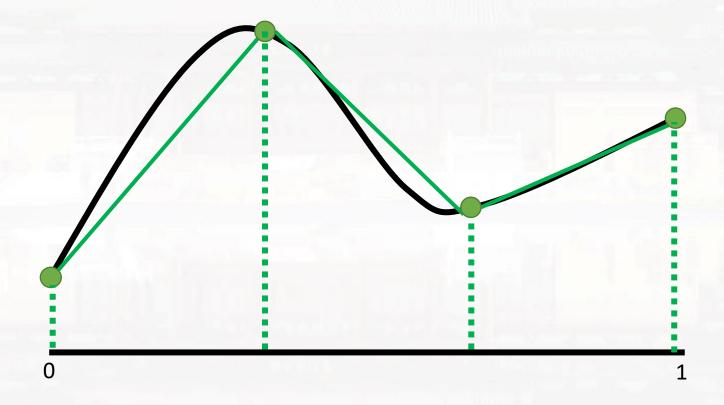
If you are interested in visualizing these or other optimization algorithms, refer to <u>this useful</u> <u>tutorial</u>.



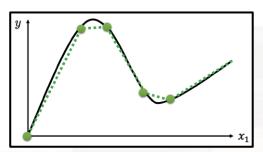


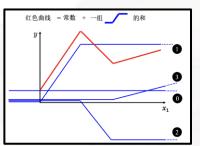
Fit Everything?

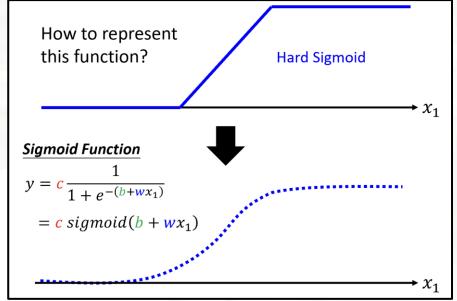
■ We can have good approximation with sufficient pieces.

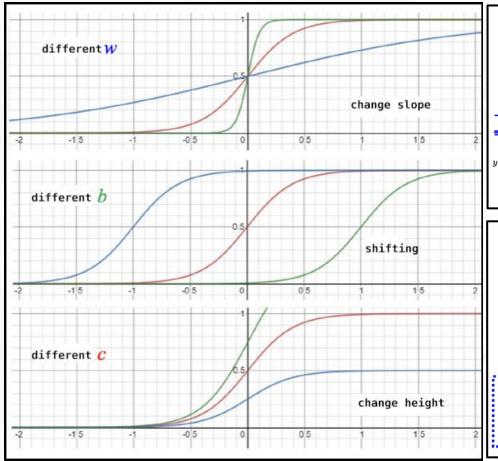


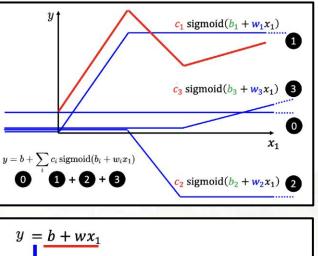
The universal approximation brought by nonlinearity









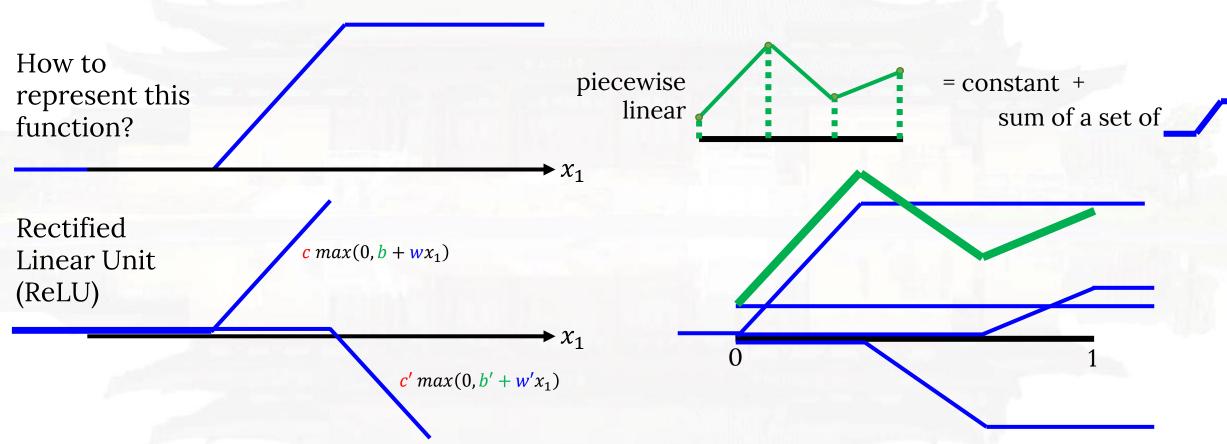


$$y = b + wx_{1}$$

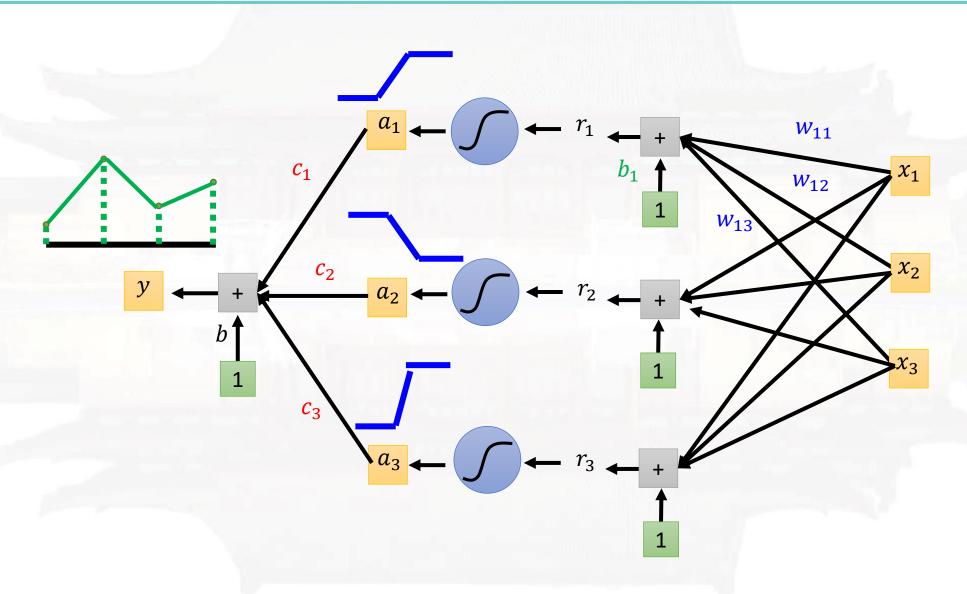
$$y = b + \sum_{i} c_{i} sigmoid(b_{i} + w_{i}x_{1})$$

$$y = b + \sum_{j} w_{j}x_{j}$$

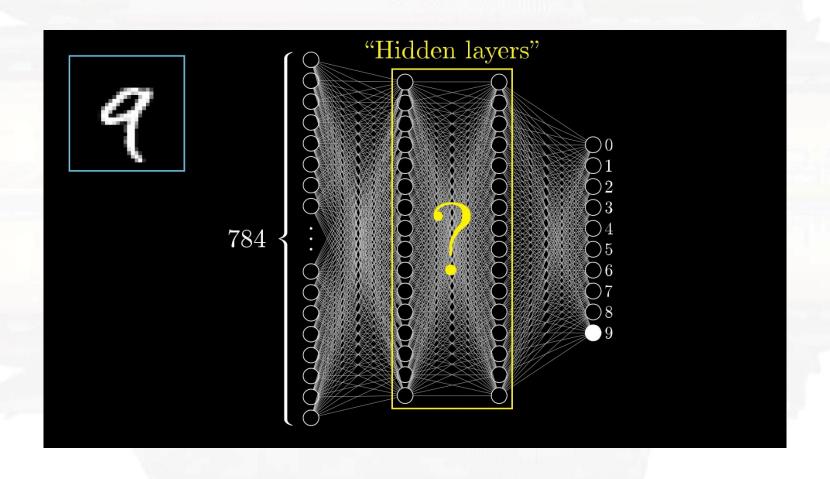
$$y = b + \sum_{i} c_{i} sigmoid(b_{i} + \sum_{j} w_{ij}x_{j})$$



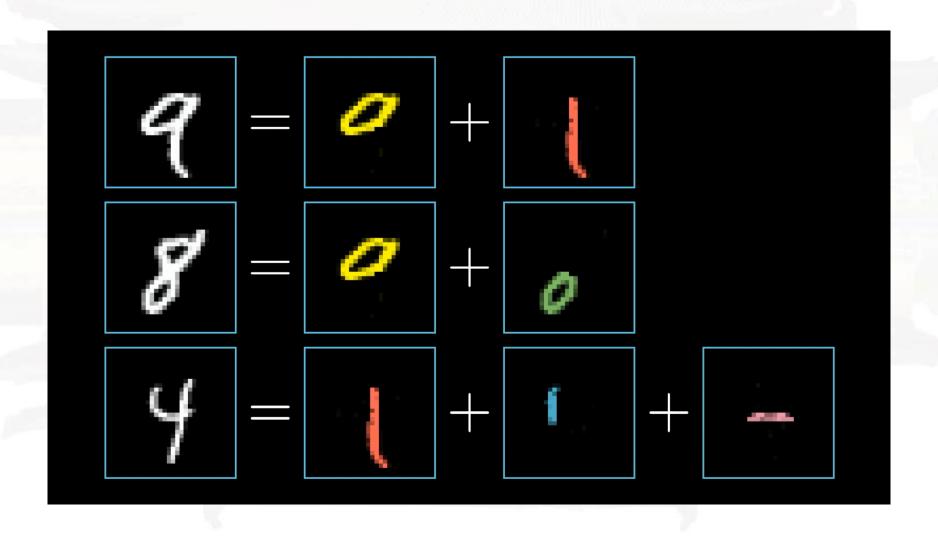
The universal approximation brought by nonlinearity



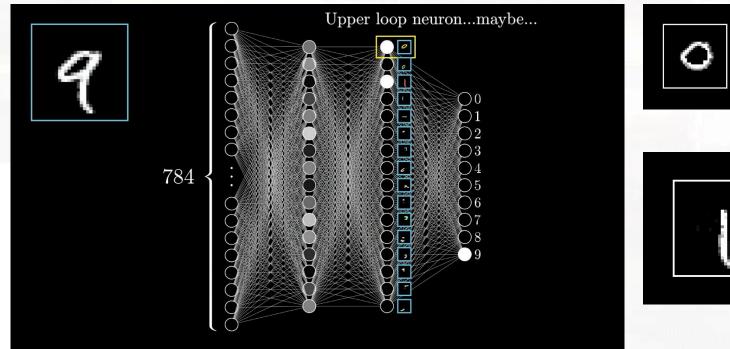
■ Why Use Layers?



■ we piece together various components like loops and lines

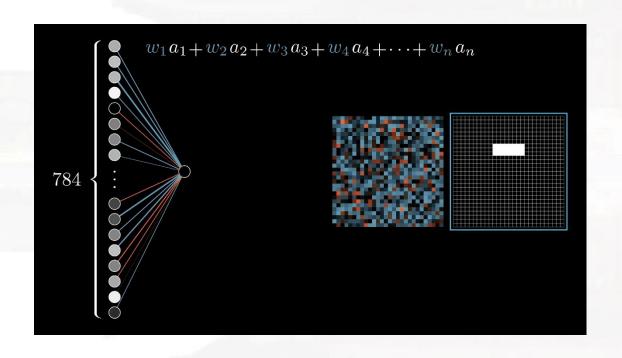


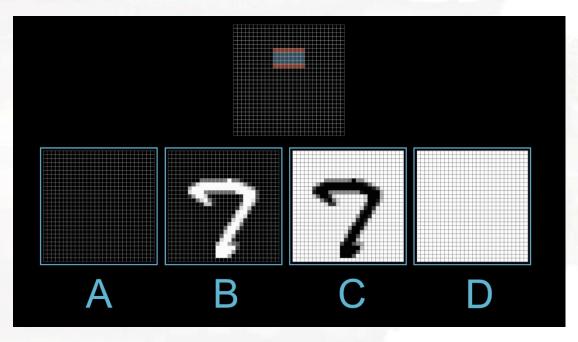
■ In a perfect world, we might hope that each neuron in the second-to-last layer corresponds to one of these subcomponents.



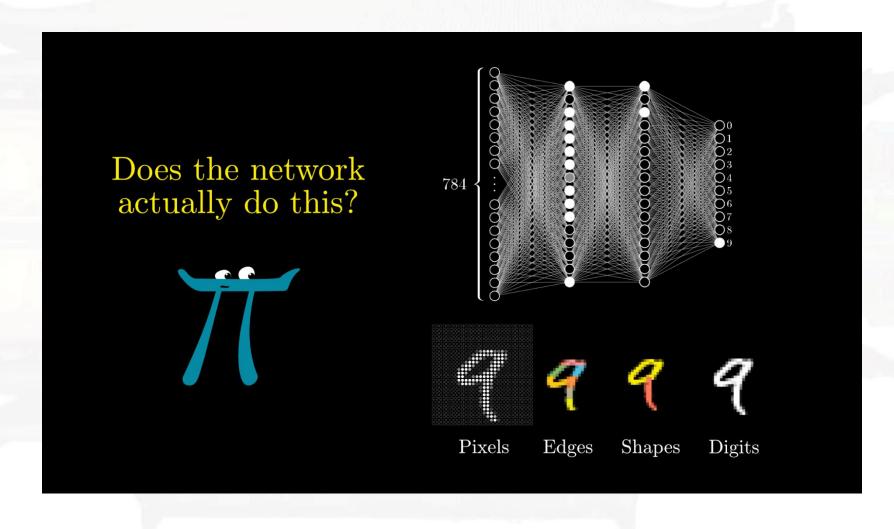
- **■** Layers Break Problems Into Bite-Sized Pieces
 - Edge detection is a useful step for all kinds of image-recognition problems.
 - beyond image recognition

■ Rank the four images (A, B, C, and D) based on how much they would activate that neuron:



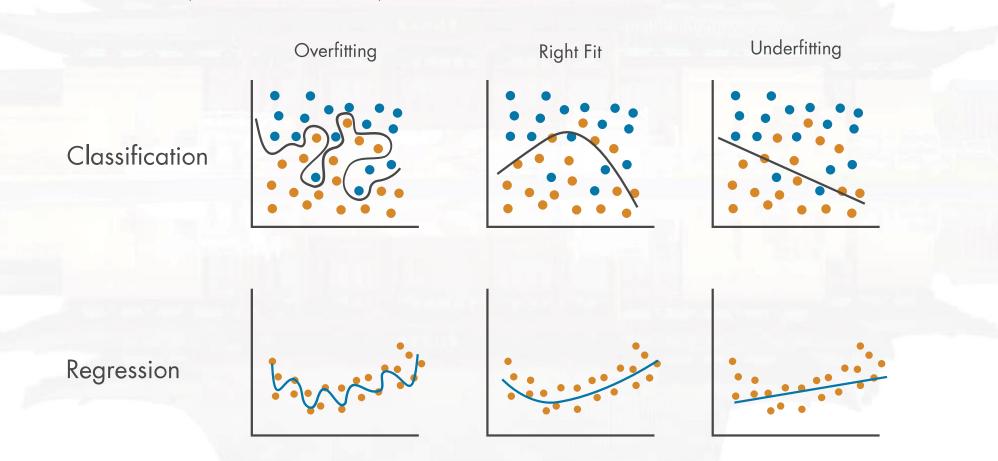


■ We hope ... but

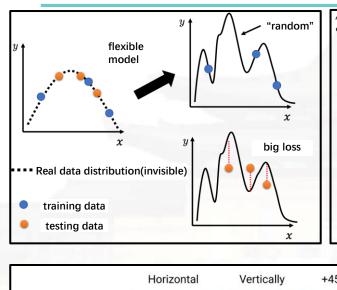


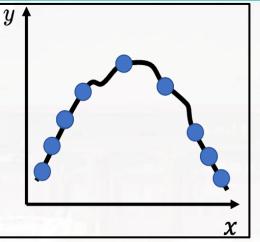
Overfitting and Underfitting

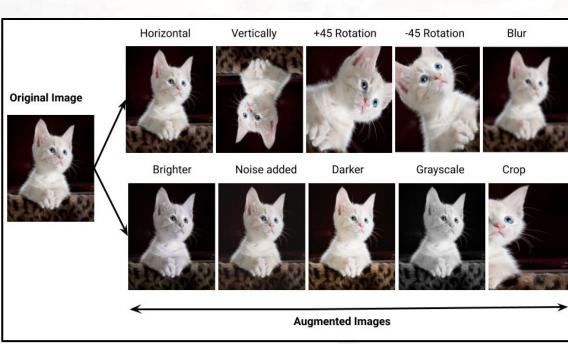
■ The balance between data (knowns or constraints) and parameters (unknowns)

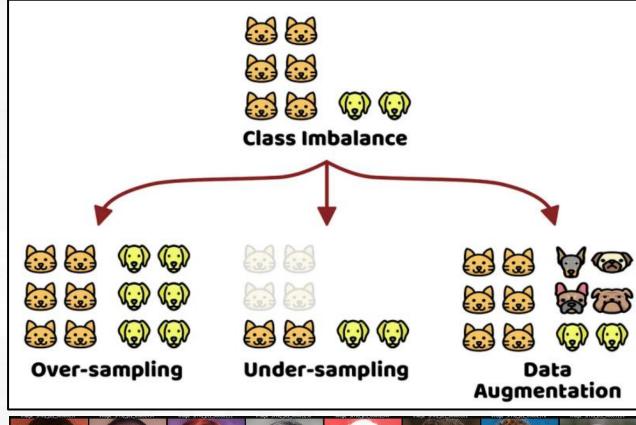


Overfitting: Data Augmentation

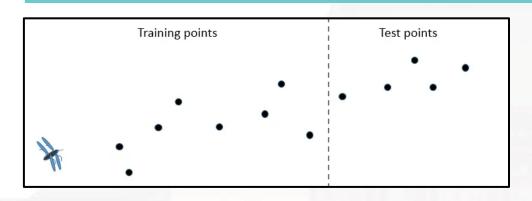


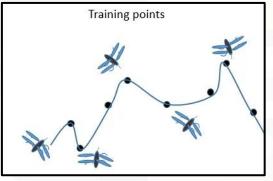


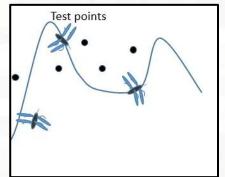


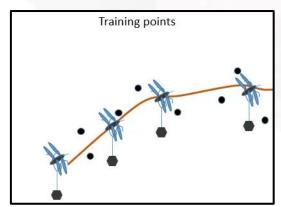


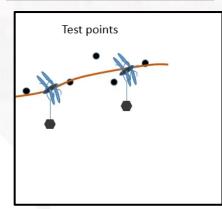
Overfitting: Regularization

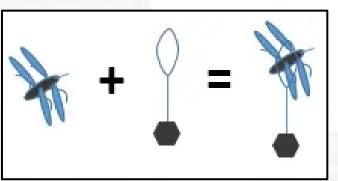


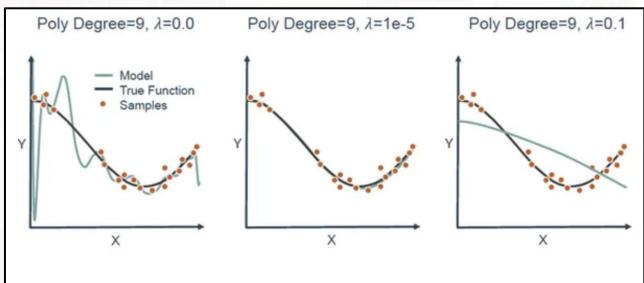






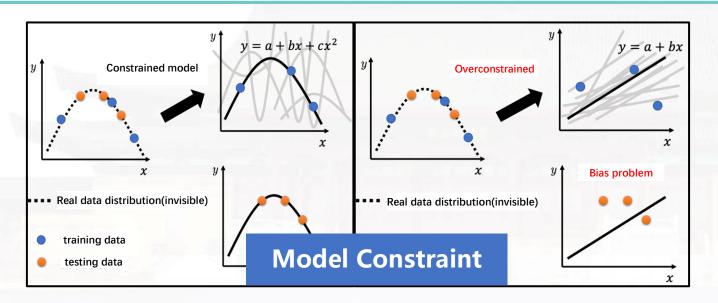


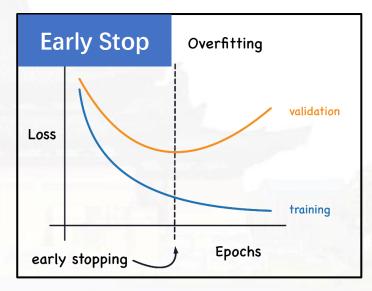


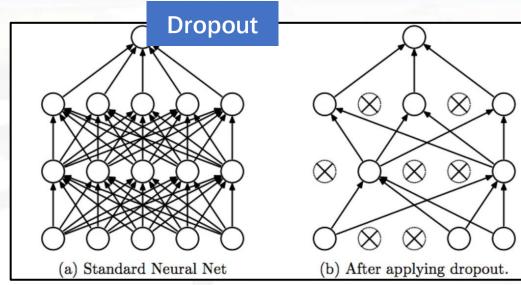


$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Overfitting







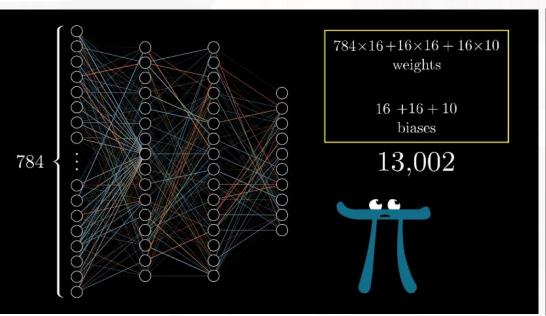
Solutions to overfitting

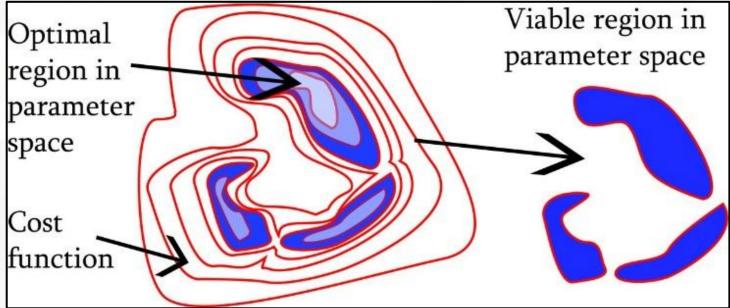
- Data augmentation
- Model constraints: regularization, architecture, dropout
- Early stop

Architectures

The Problem of MLP

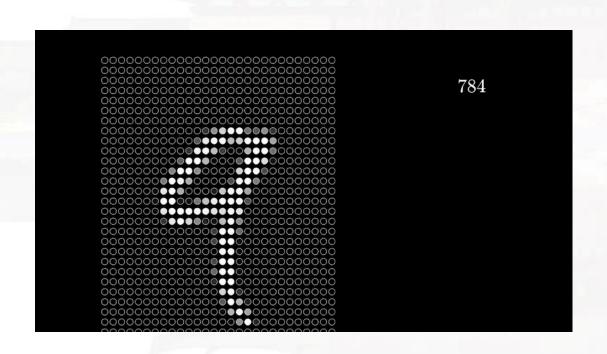
- Numerous Parameters
 - Poor Explanation due to Large Scale Minimum
 - ☐ Large Scale Minimum due to Large Scale Parameters

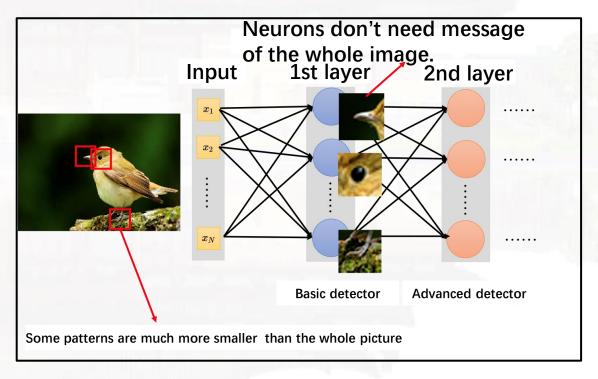




The Problem of MLP

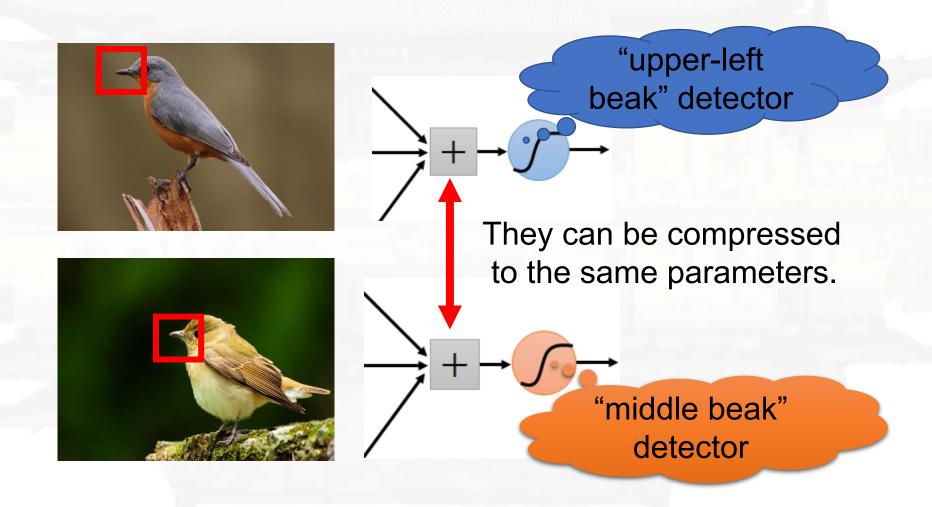
■ Poor Flexibility



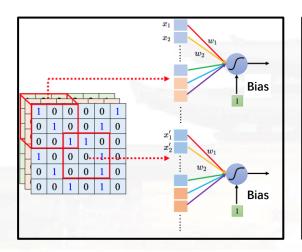


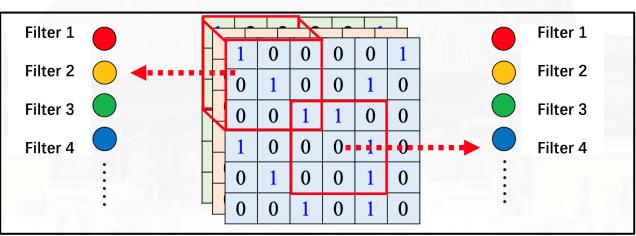
The Problem of MLP

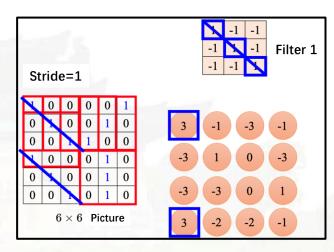
■ Poor Flexibility

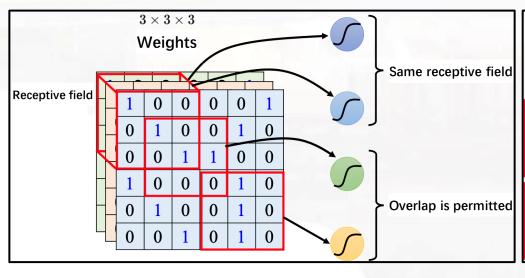


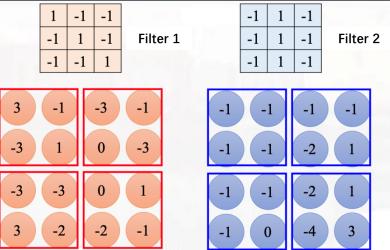
From MLP to CNN

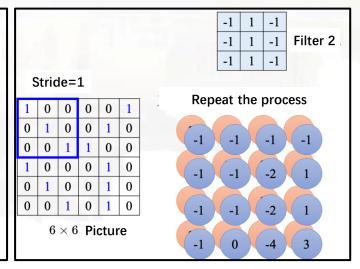






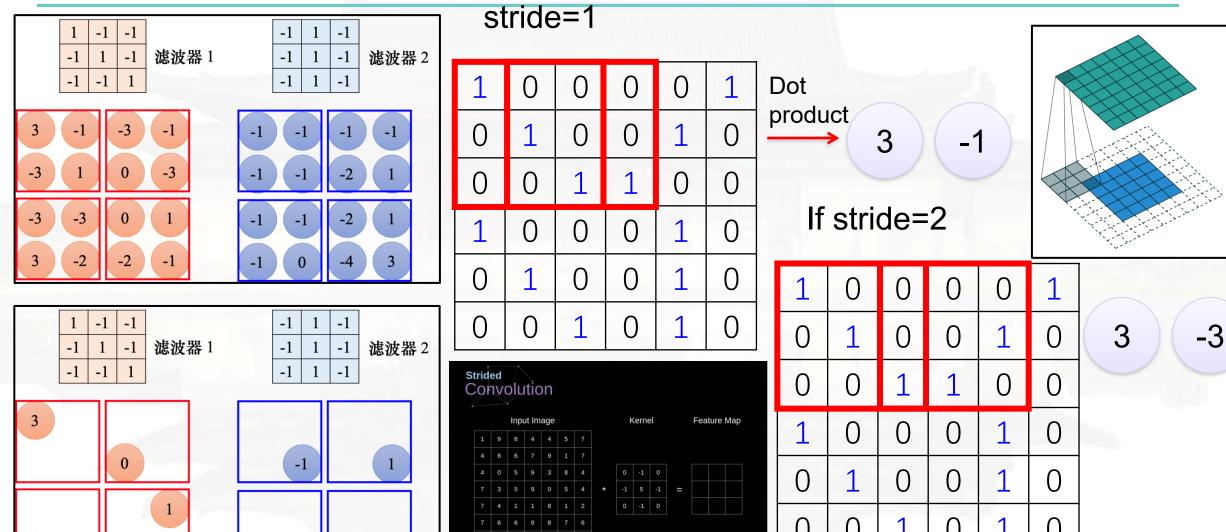






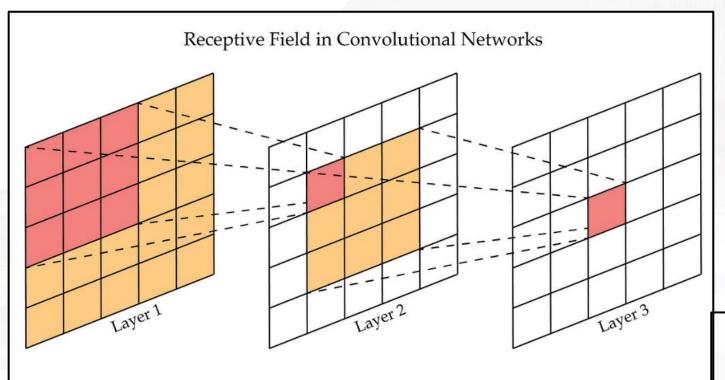
Pooling and Stride

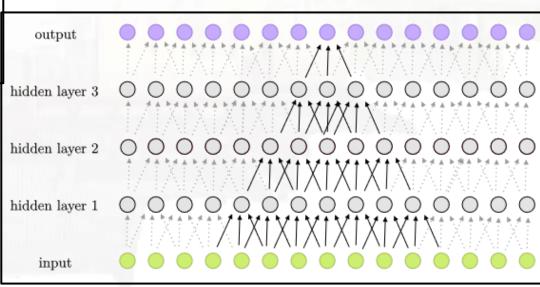
3



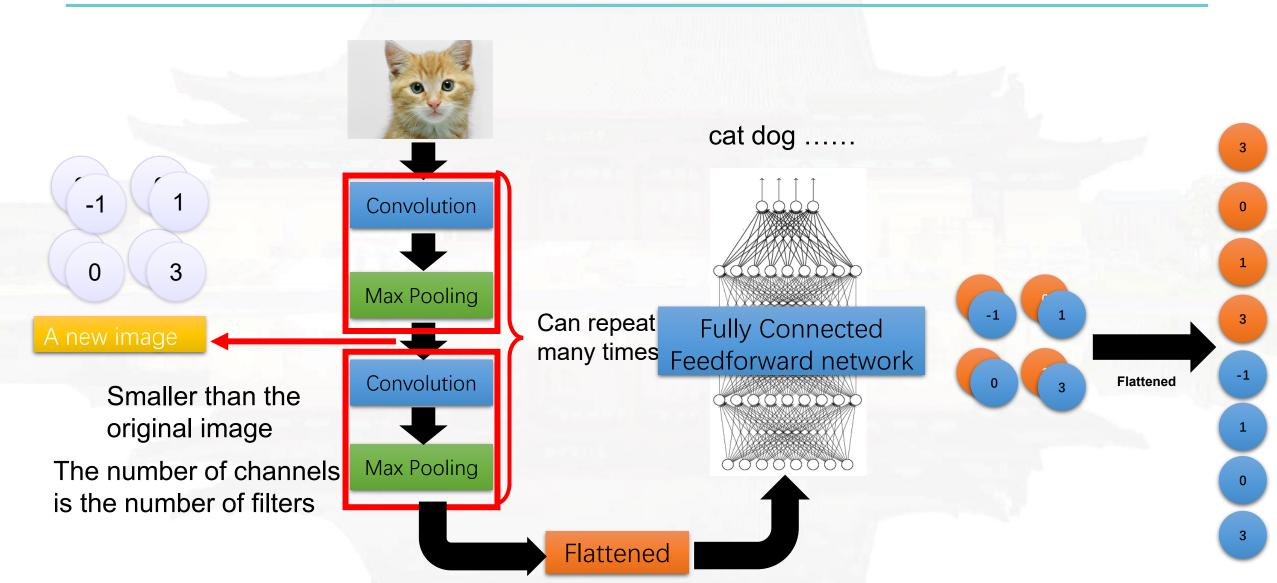
6 x 6 image

Increase Receptive Field



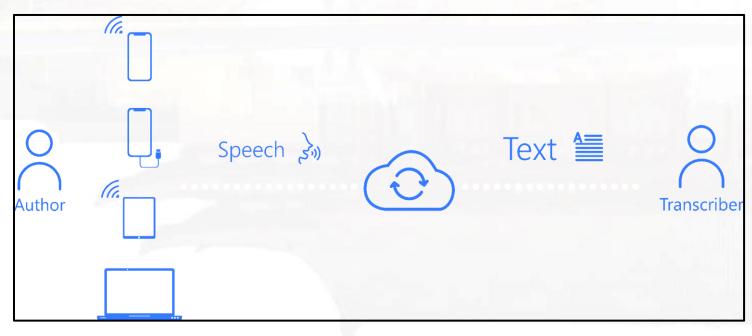


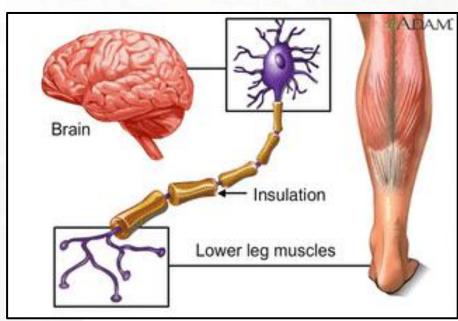
Convolutional Neural Networks



Feedforward Neural Networks

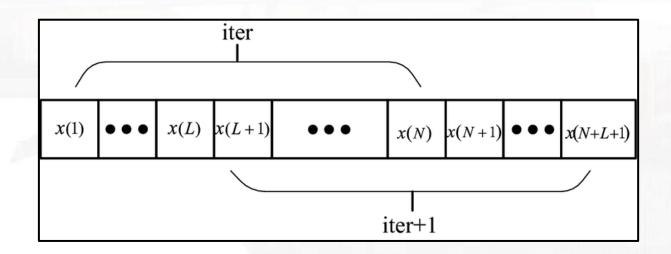
- A feedforward neural network (FNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers
- Human brain deals with information streams. Most data is obtained, processed, and generated sequentially.





The Problem of FNNs

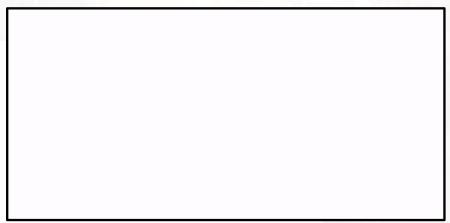
- Human thoughts have persistence; humans don't start their thinking from scratch every second.
- The applications of standard FNNs are limited due to:
 - They only accepted a fixed-size vector as input (e.g., an image) and produce a fixed-size vector as output
 - These models use a fixed amount of computational steps

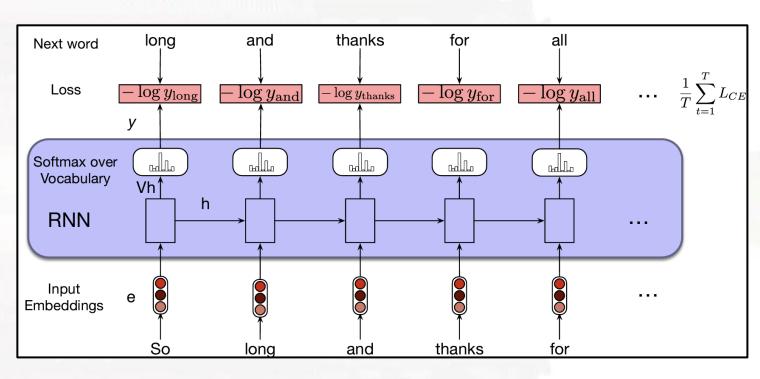




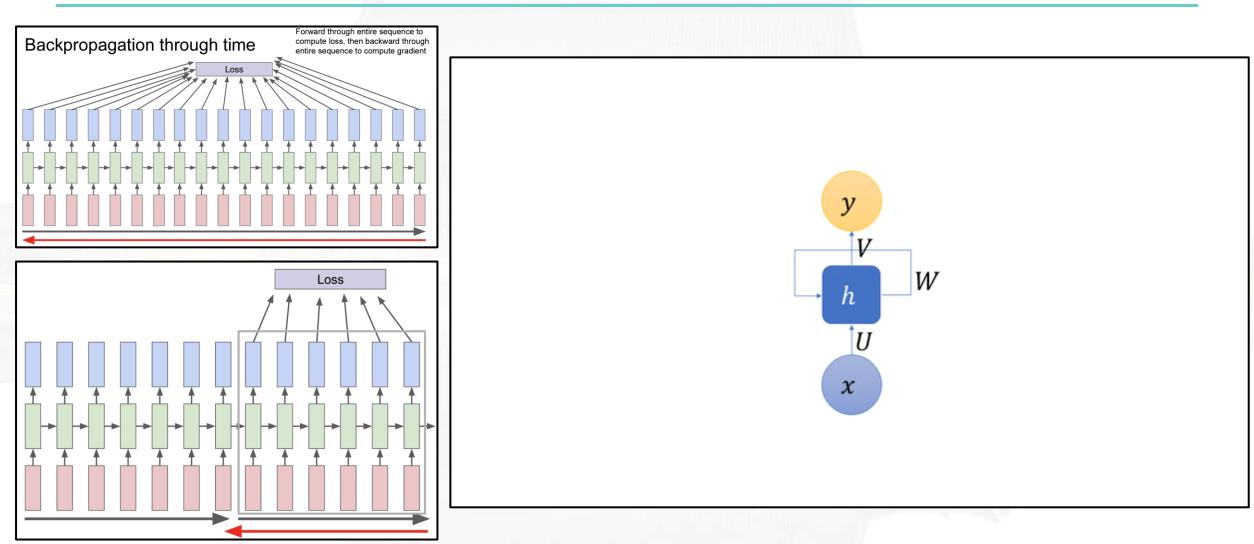
Recurrent Neural Networks



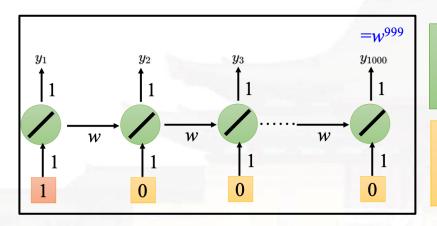




Training RNN



Gradient Vanishing and Exploding

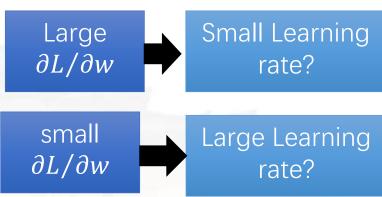


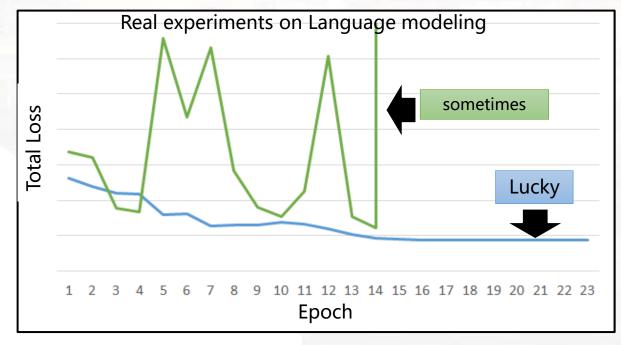
$$w = 1 \qquad y^{1000} = 1$$

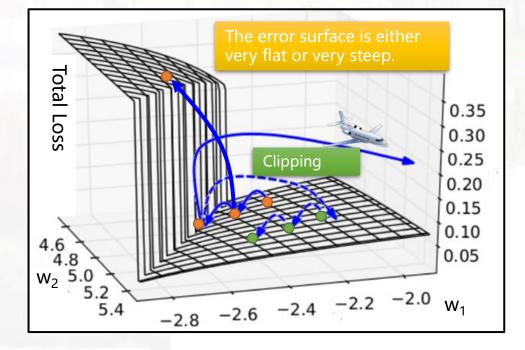
$$w = 1.01 \qquad y^{1000} \approx 20000$$

$$w = 0.99 \qquad y^{1000} \approx 0$$

$$w = 0.01 \qquad y^{1000} \approx 0$$



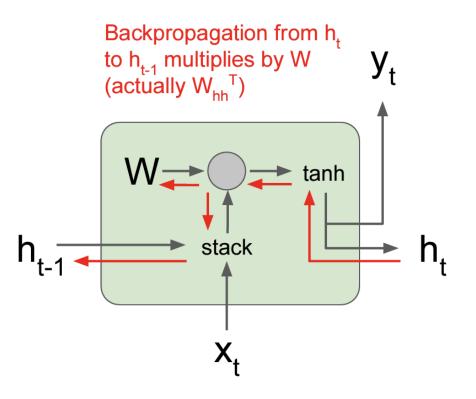




Gradient Vanishing

Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

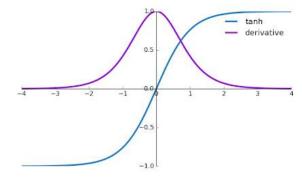


$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$rac{\partial h_t}{\partial h_{t-1}} = tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}$$

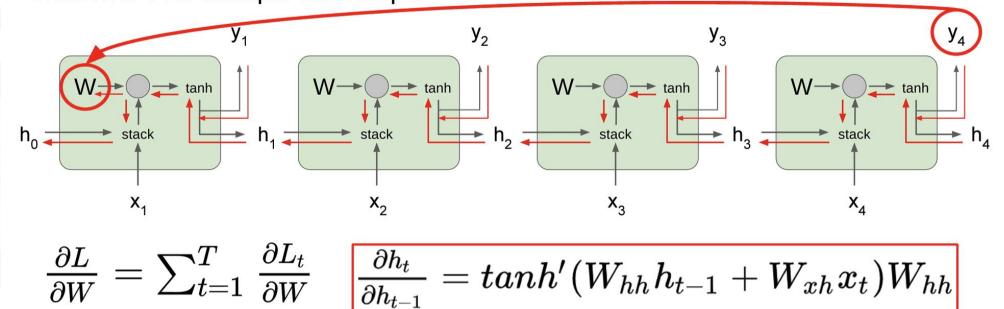


Gradient Vanishing

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



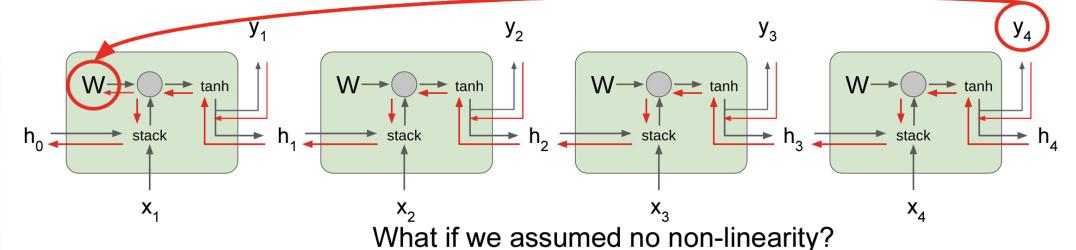
$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} rac{\partial h_t}{\partial h_{t-1}} \dots rac{\partial h_1}{\partial W} = rac{\partial L_T}{\partial h_T} (\prod_{t=2}^T rac{\partial h_t}{\partial h_{t-1}}) rac{\partial h_1}{\partial W}$$

Gradient Vanishing

Vanilla RNN Gradient Flow

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013



$$rac{\partial L}{\partial W} = \sum_{t=1}^{T} rac{\partial L_t}{\partial W}$$

$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} W_{hh}^{T-1} rac{\partial h_1}{\partial W}$$

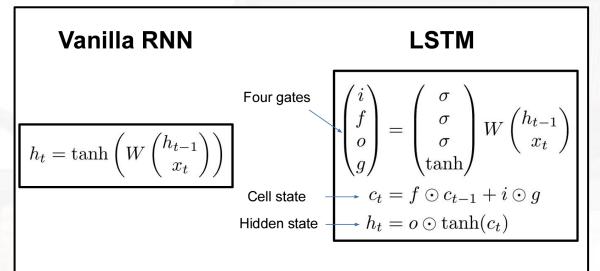
Largest singular value > 1: **Exploding gradients**

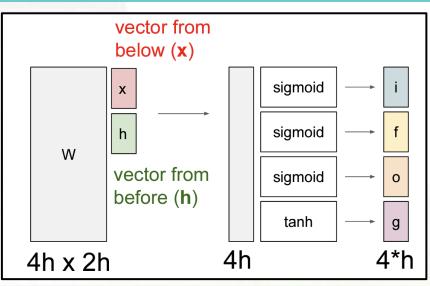
Largest singular value < 1: **Vanishing gradients**

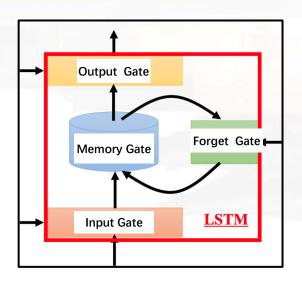
→ Gradient clipping: Scale gradient if its norm is too big

grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
 grad *= (threshold / grad_norm)

RNN and LSTM







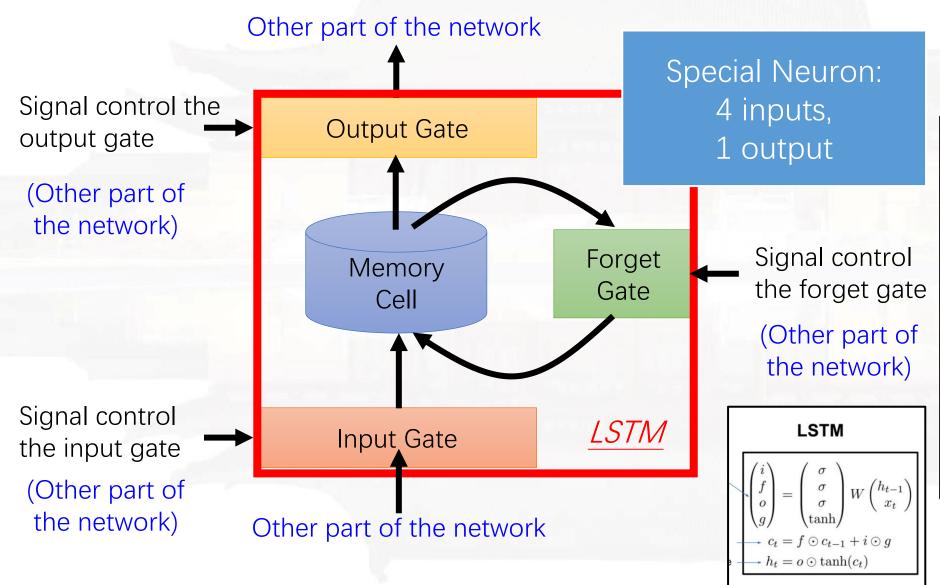
i: Input gate, whether to write to cell

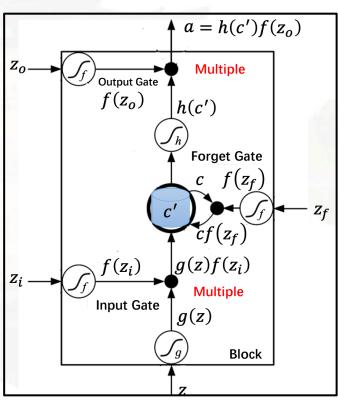
f: Forget gate. Whether to erase cell

o: Output gate, How much to reveal cell

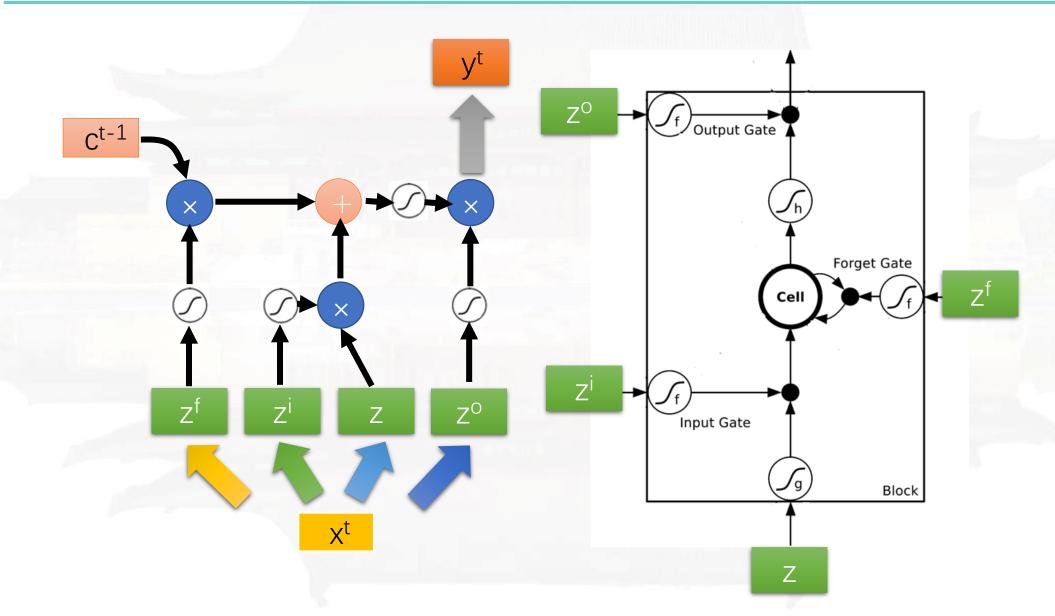
g: Gate gate (?), How much to write to cell

RNN and LSTM

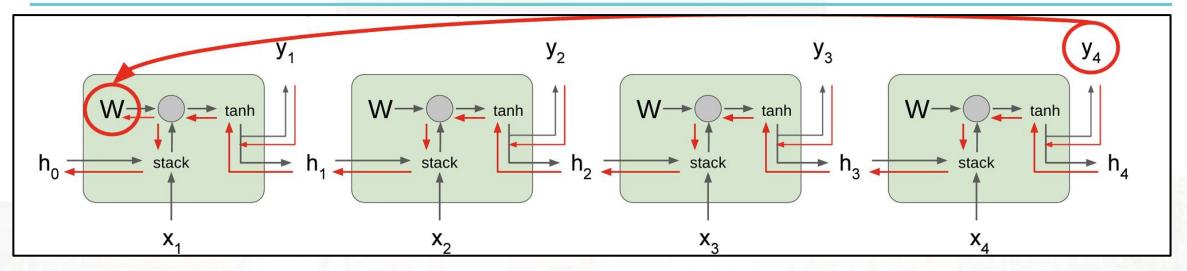


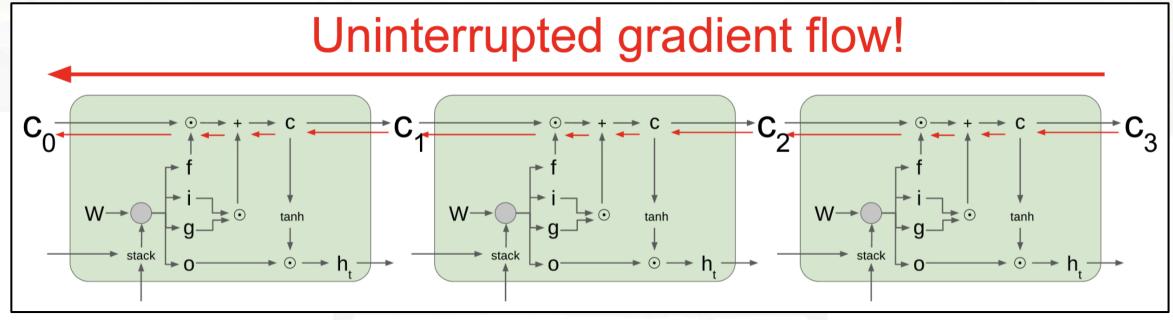


RNN and LSTM

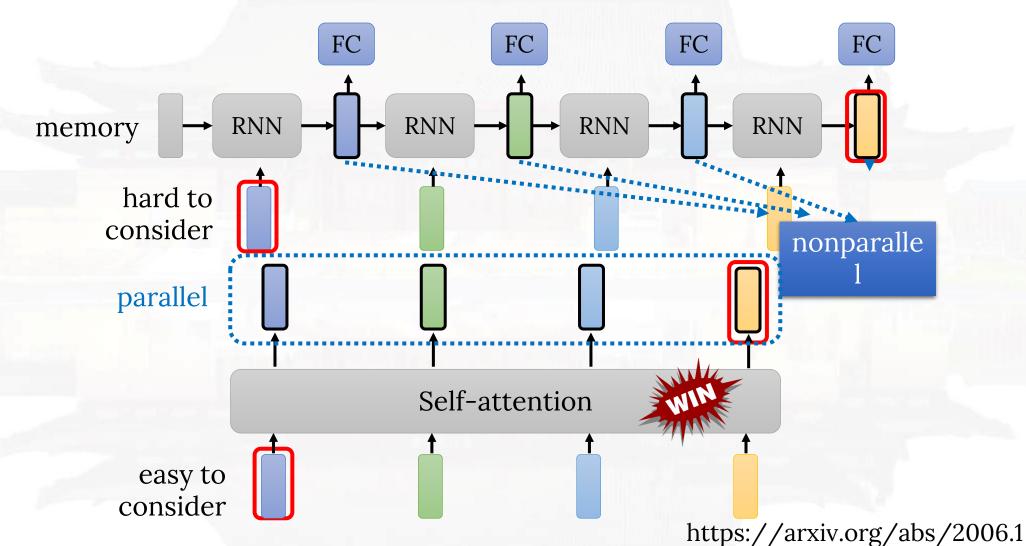


RNN and LSTM





From RNN to Attention

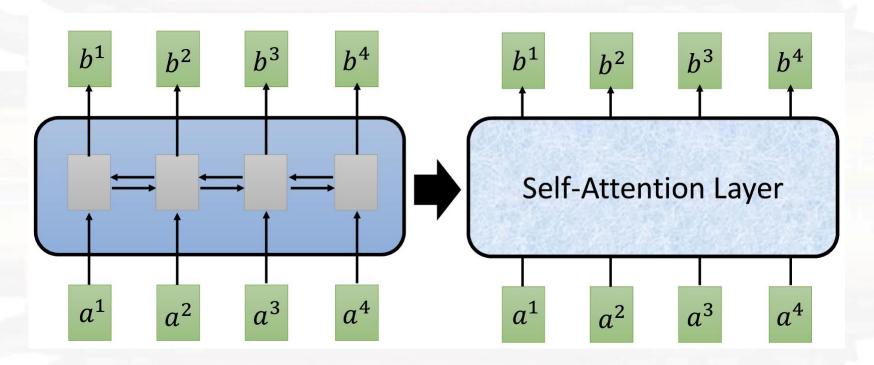


Transformers are RNNs: Fast Autoregressive Transf236ners with Linear Attention

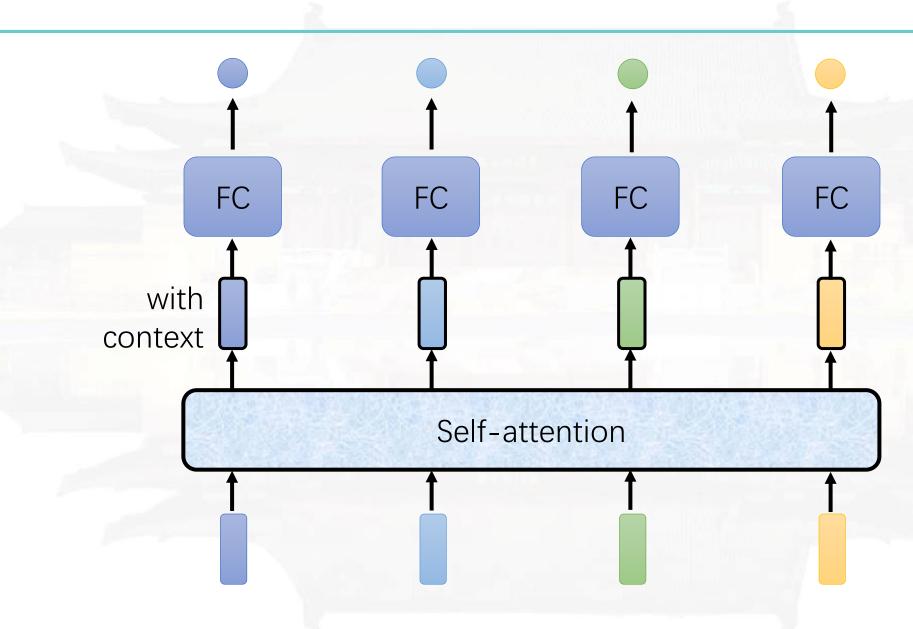
From RNN to Attention

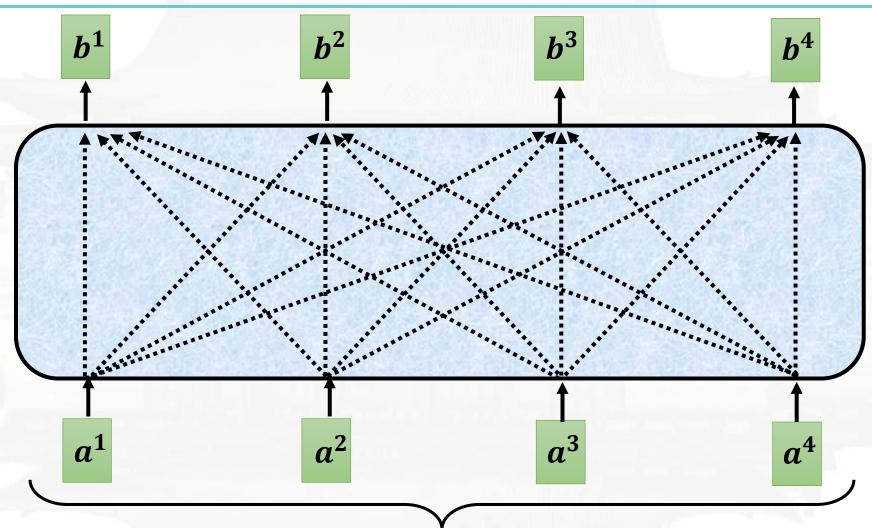
 b^i is obtained based on the whole input sequence.

 b^1 , b^2 , b^3 , b^4 can be parallelly computed.

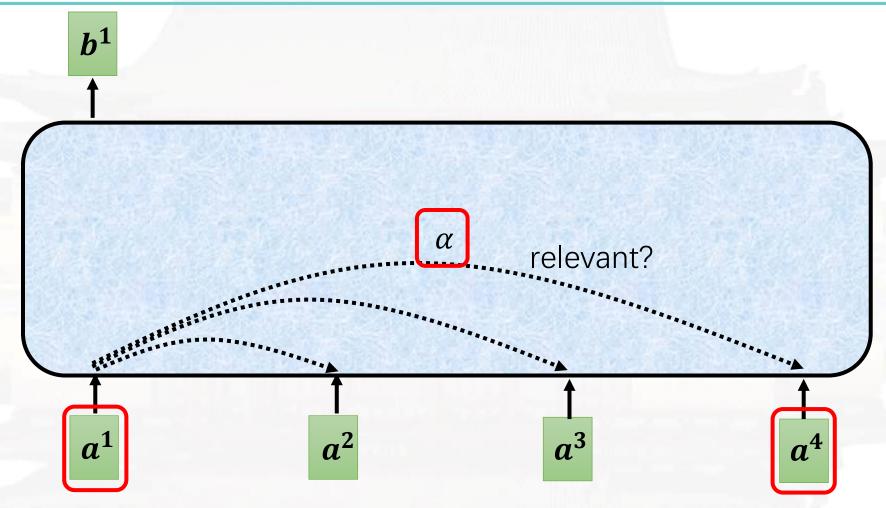


You can try to replace any thing that has been done by RNN with self-attention.

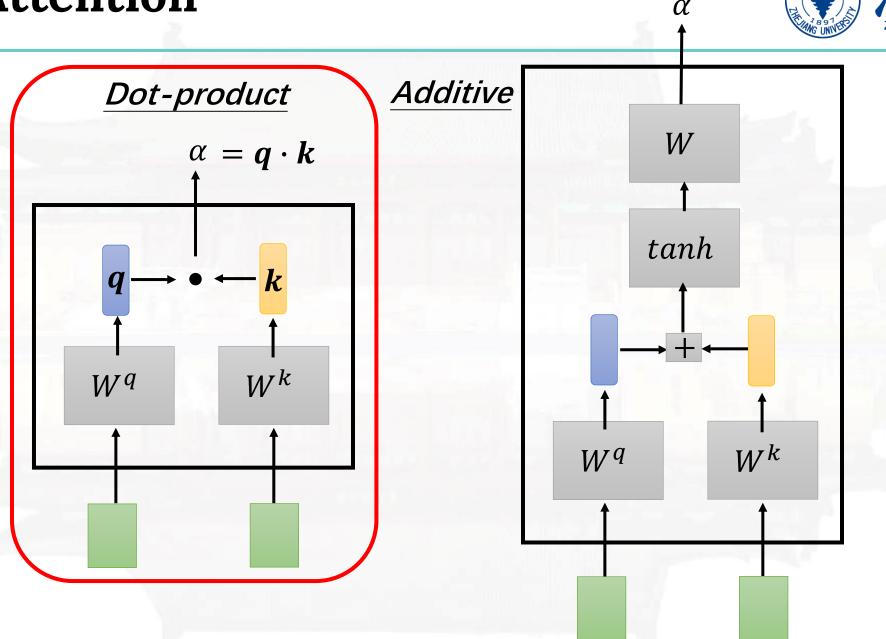


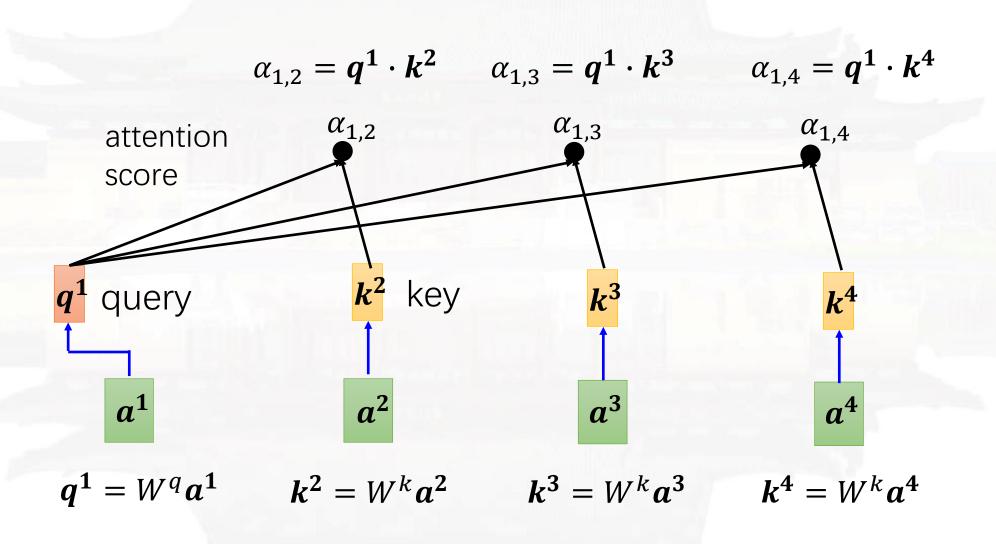


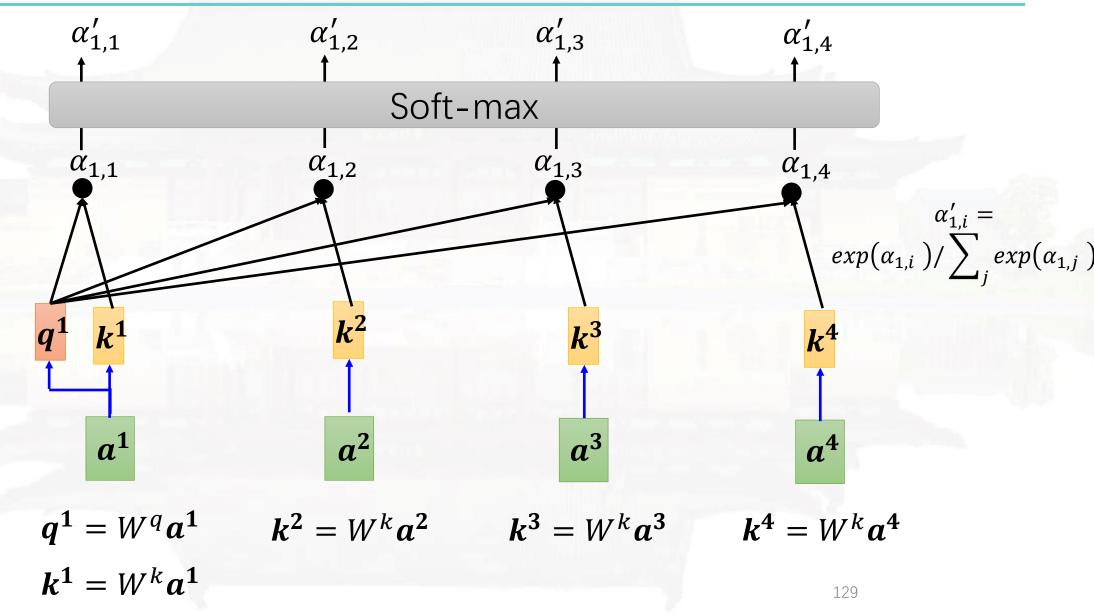
Can be either input or a hidden layer

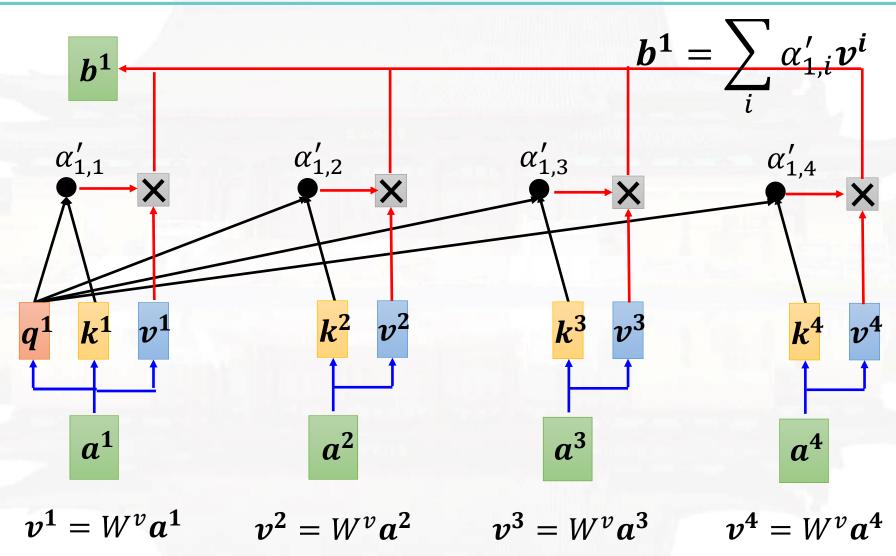


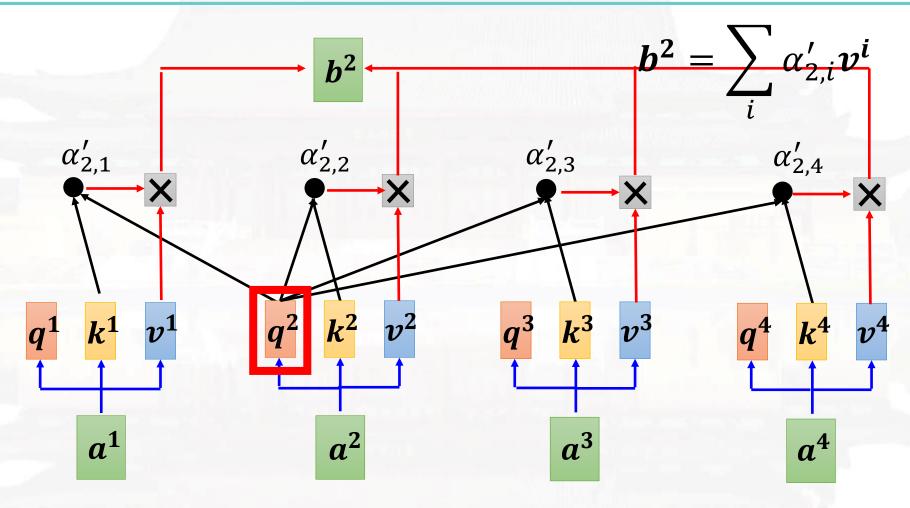
Find the relevant vectors in a sequence

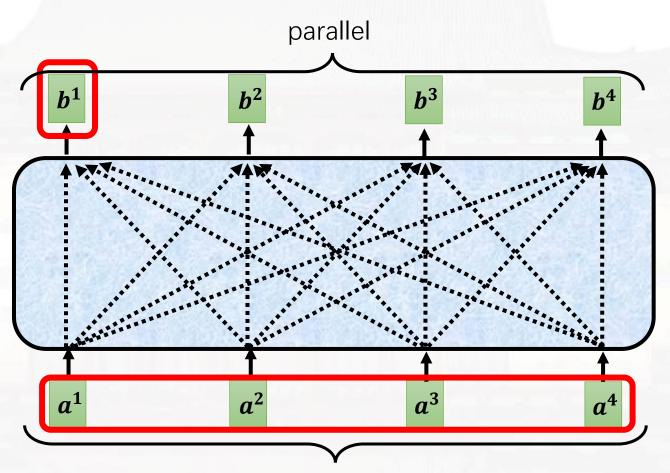




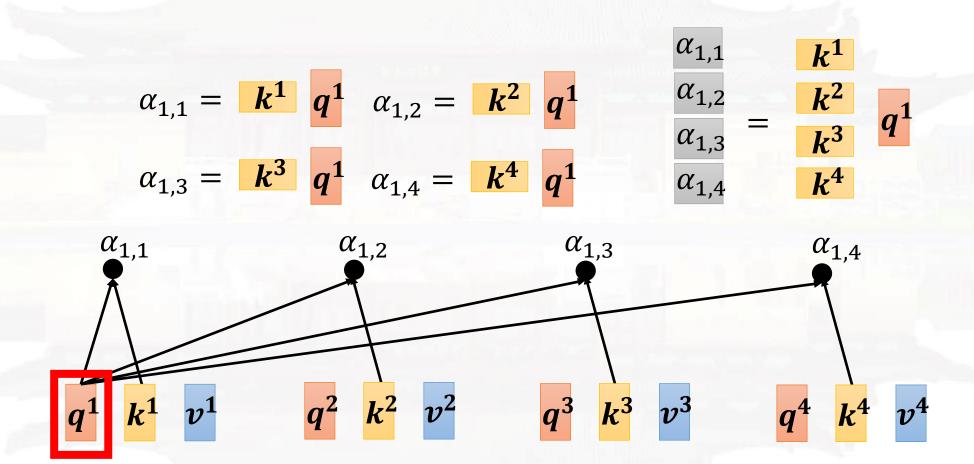


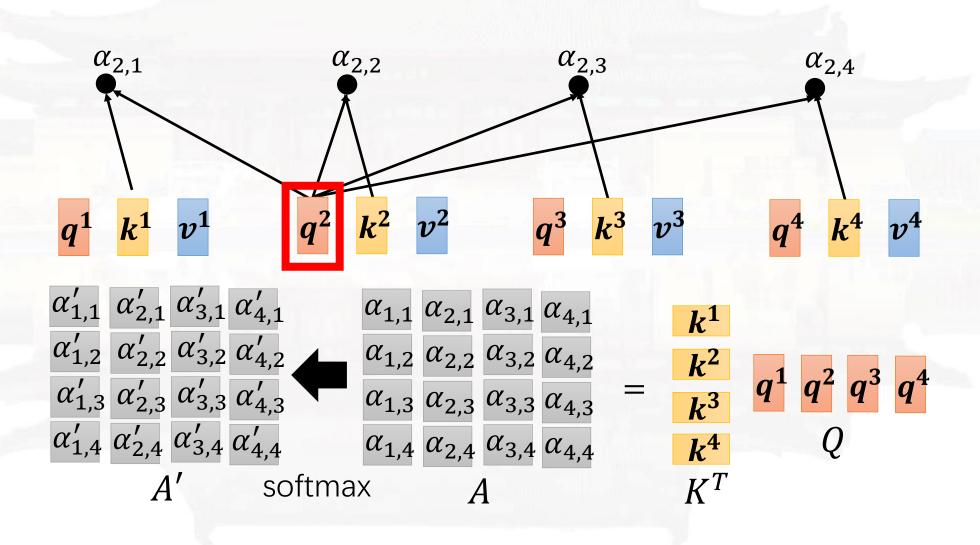


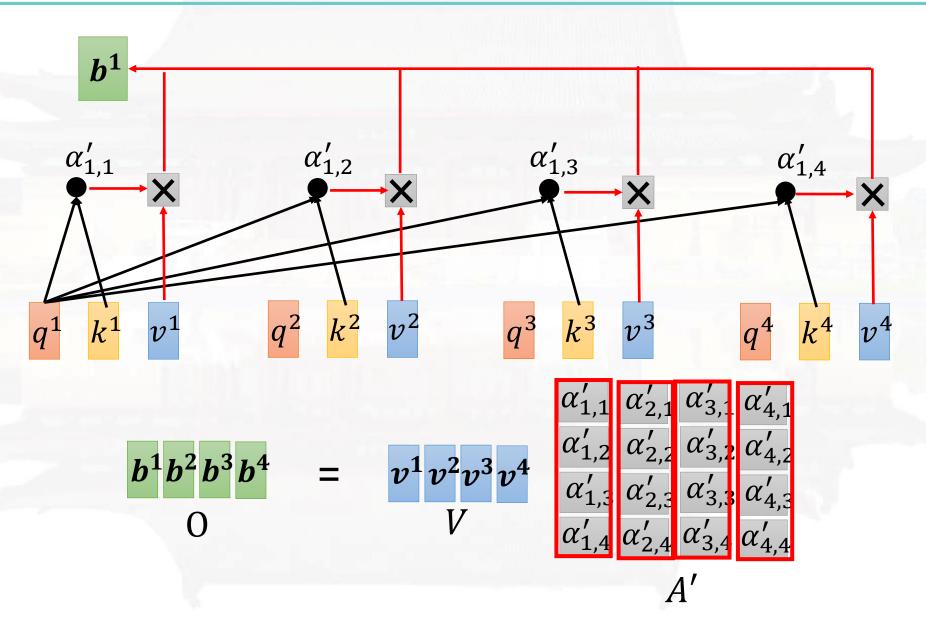


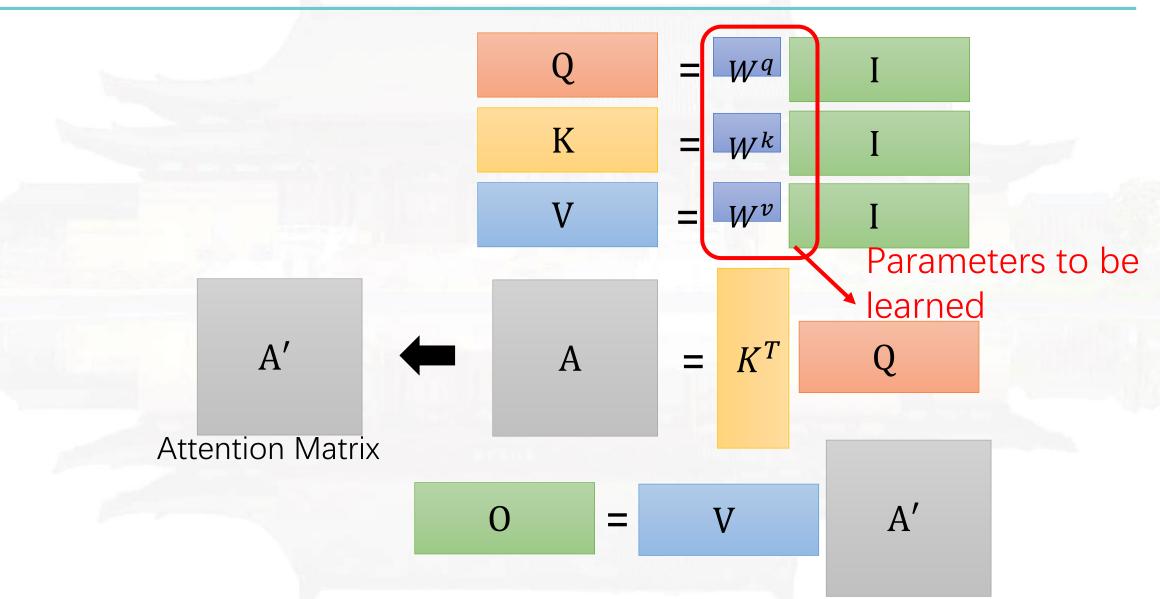


Can be either **input** or **a hidden layer**

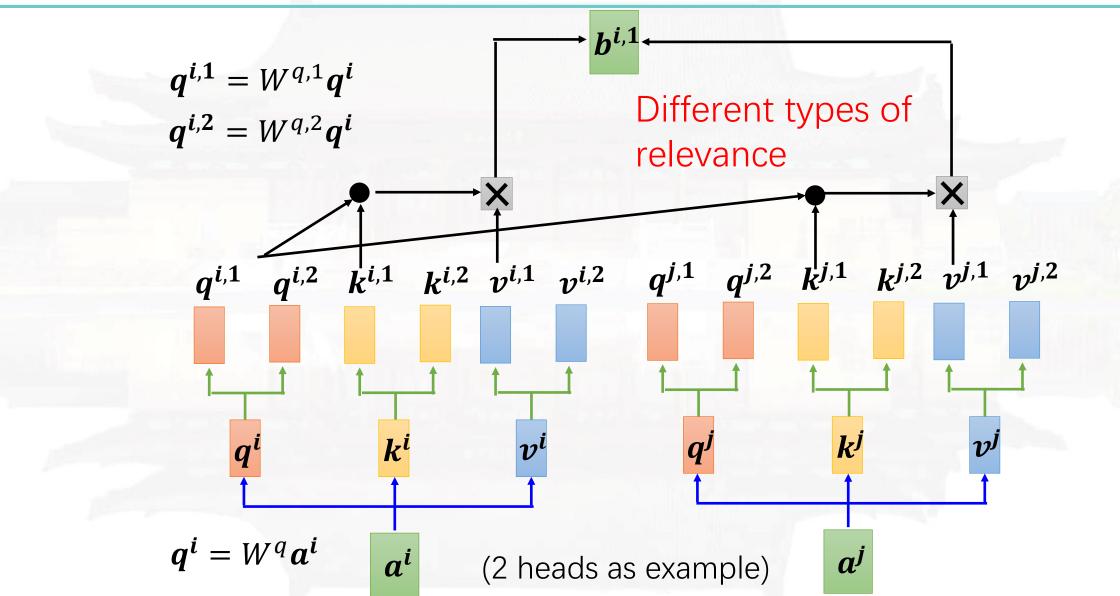




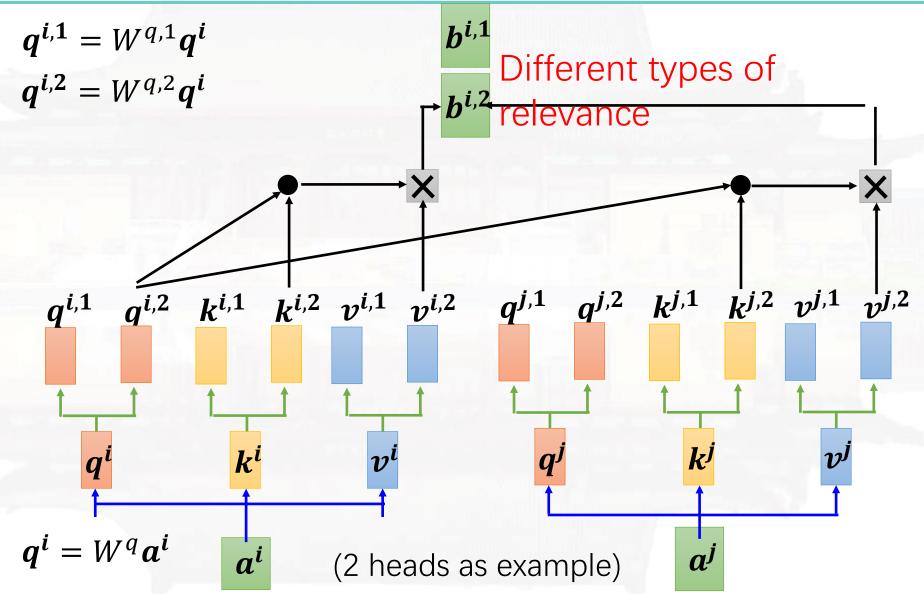




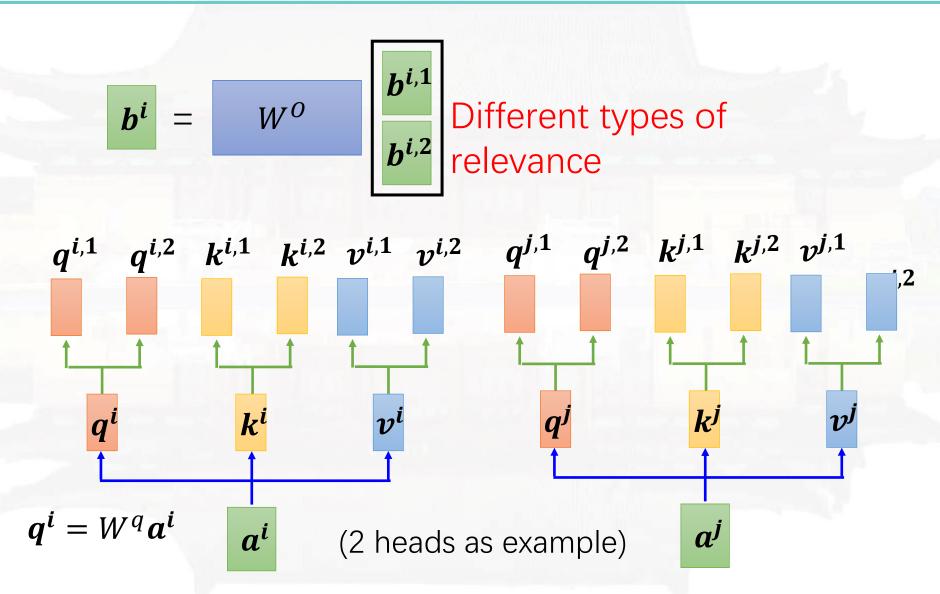
Multi-head Self-attention



Multi-head Self-attention

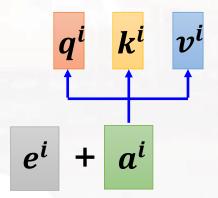


Multi-head Self-attention

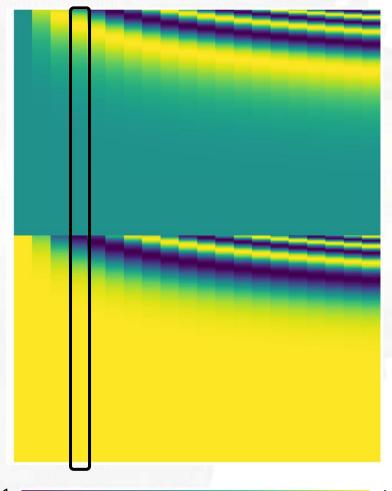


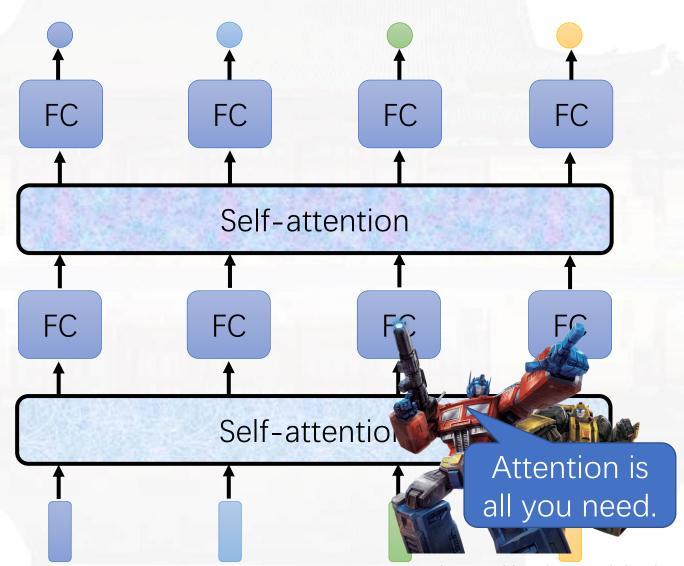
Positional Encoding

- No position information in self-attention.
- Each position has a unique positional vector e^{i}
- hand-crafted
- learned from data

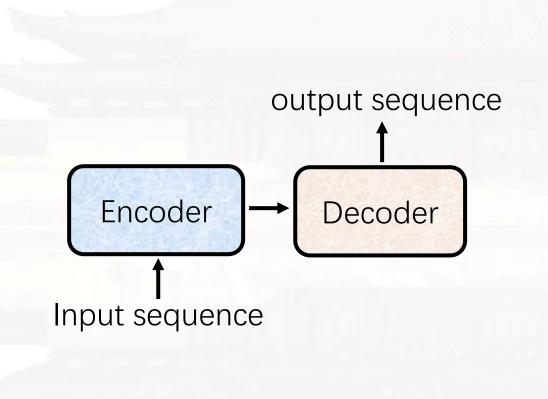


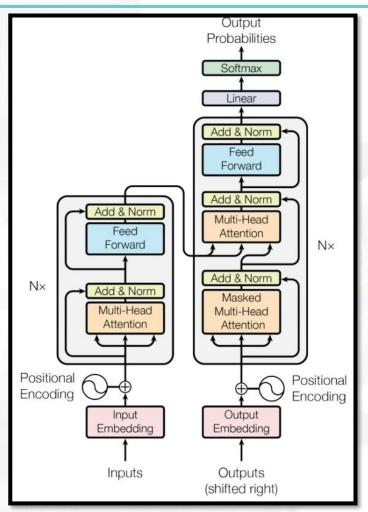
Each column represents a positional vector e^i





https://arxiv.org/abs/1706.03762

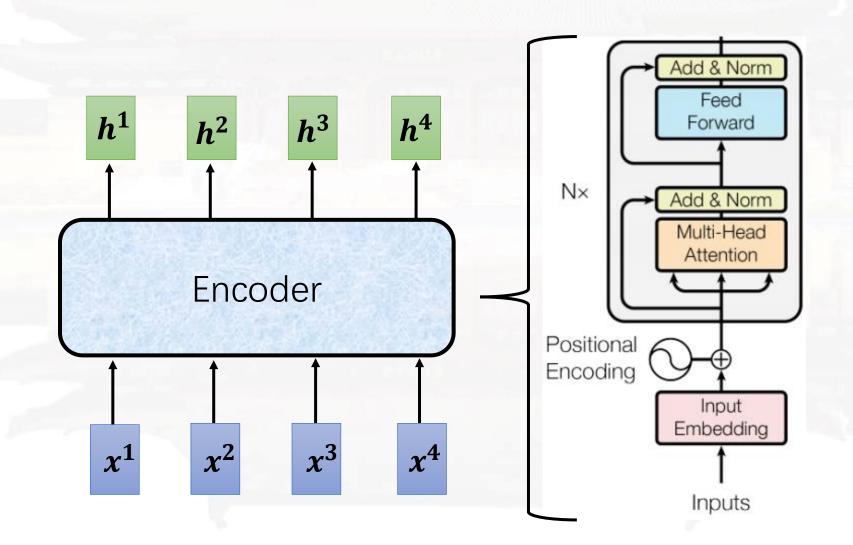




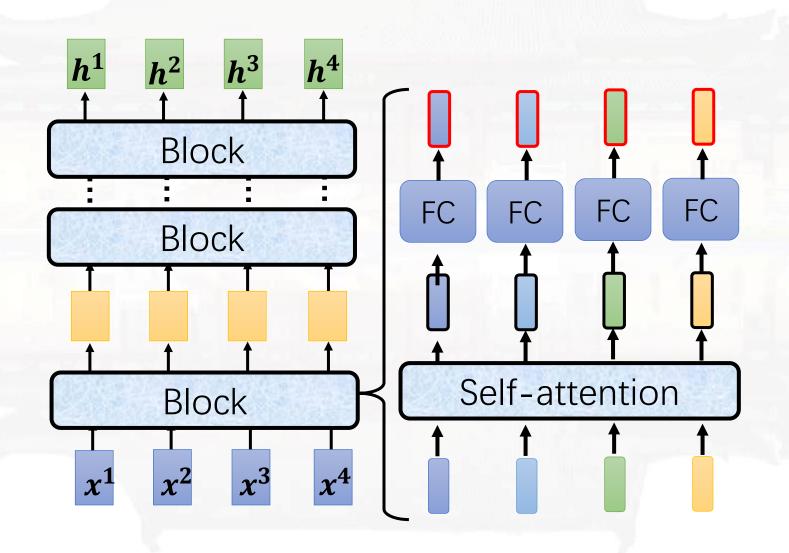
Transformer

https://arxiv.org/abs/1706.03762

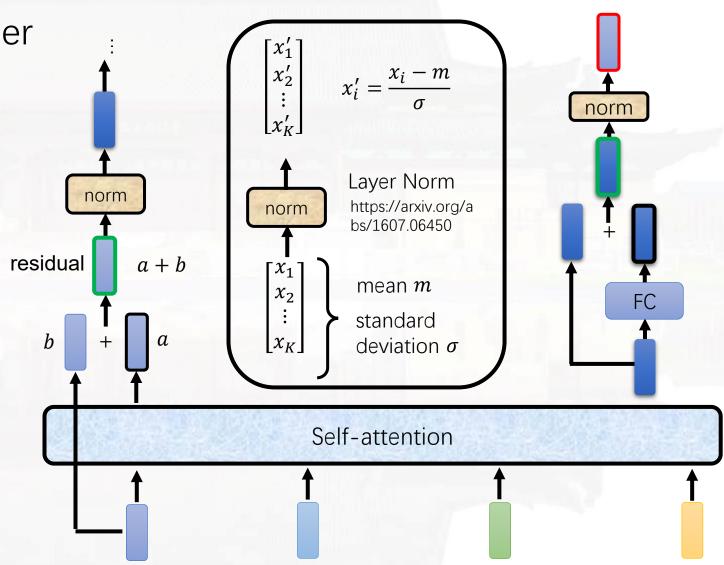
• Transformer's Encoder



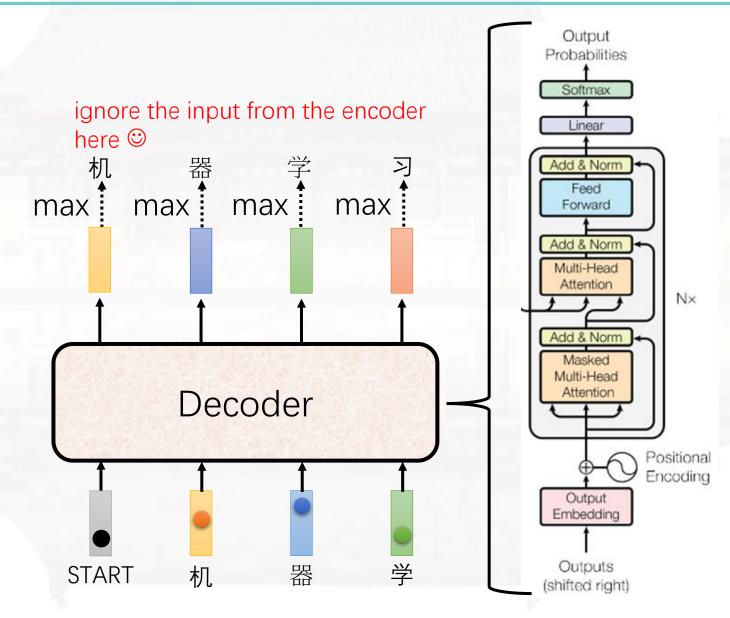
• Transformer's Encoder

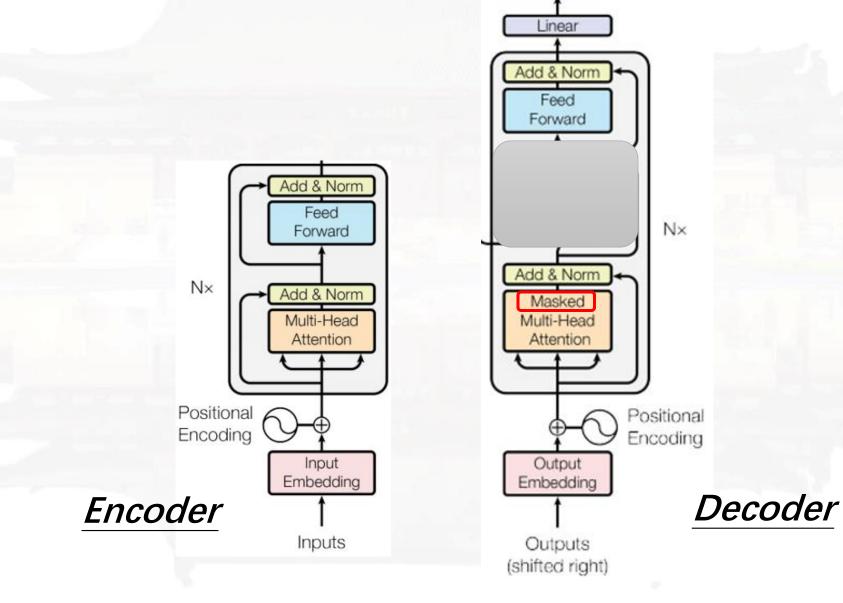


• Transformer's Encoder



 Transformer's Encoder BERT I use the same network architecture as transformer encoder. Add & Norn Feed Forward h^1 h^3 h^2 N× Add & Norm Multi-Head Attention Encoder Residual + Layer Positional Encoding norm Input Embedding Inputs

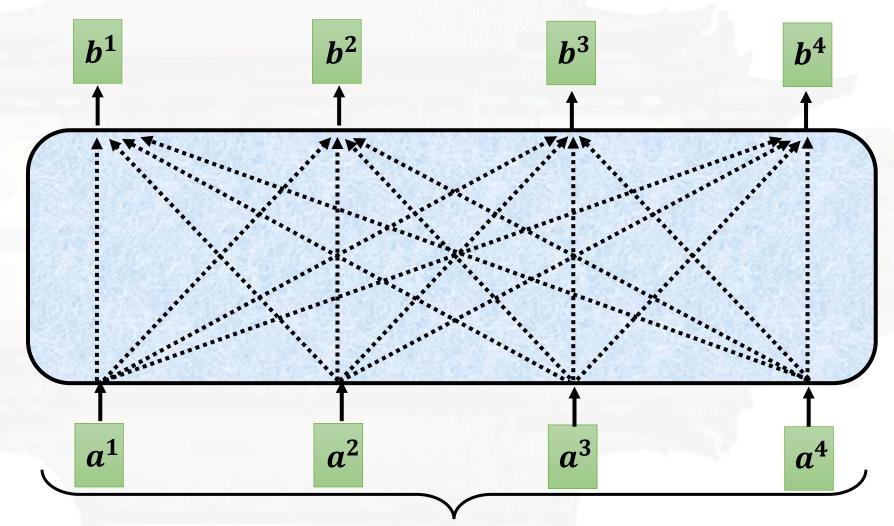




Output Probabilities

Softmax

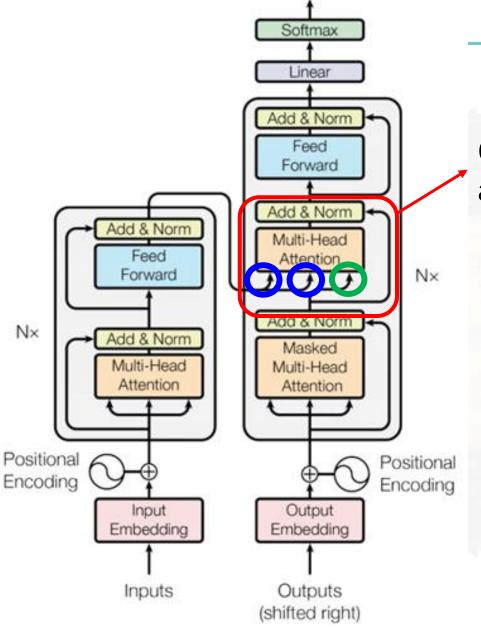
Masked Self-attention



Can be either input or a hidden layer

 Masked Self-attention $\alpha'_{2,2}$ $\alpha'_{2,1}$ $\alpha'_{2,3}$ $\alpha'_{2,4}$

Why masked? Consider how does decoder work



Output

Probabilities

Cross attention

